Nanoindenters, also known as depth-sensing indenters or instrumented indenters, are instruments designed to quantitatively measure the mechanical properties of small volumes of material. Nanoindenters operate by pressing a nanoindentation probe into the surface of a material and measuring the relationship between applied probe force and the resulting probe displacement. The force vs. displacement curve is the mechanical fingerprint of the material from which quantitative mechanical properties can be calculated at the nanoscale.
Indentation testing has been utilized for over a century to measure the hardness of materials. In a traditional hardness test the size of the residual indent impression needs to be physically measured to obtain a hardness value (function of applied force divided by the size of the indent impression). The requirement to measure the residual indent dimensions places a lower limit on the scale of testing that can be efficiently and reliably performed. The depth-sensing capabilities of nanoindenter systems eliminate the need for measuring the size of the indent impression, increasing the accuracy, precision, and throughput of small volume mechanical property characterization.
Nanoindenter systems are not only utilized for the characterization of thin films and low dimensional materials, but are also routinely utilized to accelerate the development of bulk engineered materials. The ability to characterize individual grains/phases/interfaces within a bulk material provides a greater understanding of structure-property-processing-performance relationships. Quantitative mechanical characterization at the nanoscale combined with structure-property optimization is one of the foundations of today’s material development initiatives.
Nanoindenter systems are used to quantitatively measure a variety of nanoscale mechanical properties. In addition to hardness measurements, nanoindenter-based techniques enable elastic modulus, creep, stress relaxation, viscoelastic properties, interfacial adhesion, and fracture toughness characterization at sub-micrometer length scales.
Over the past two decades, nanoindenter systems have been enhanced to perform tests far beyond quasi-static nanoindentation at room temperature. Techniques and technologies exist to quantitatively measure the nanoscale mechanical and tribological properties of most classes of material, from ultra-thin hard films to soft hydrogels. Additionally, environment-specific properties can be measured utilizing specialized environmental control stages.
Bruker has developed and commercialized the widest range of nanoindenters and is the world leader in nanomechanical testing technologies. Our Hysitron nanoindenter instruments range from industry-leading standalone systems, to nanoindenters that interface with various microscopy techniques, to high-throughput process metrology systems. Additional details about Hysitron nanoindenter products can be found below.
Bruker partners with our customers to solve real-world application issues. We develop next-generation technologies and help customers select the right system and accessories. This partnership continues through training and extended service, long after the tools are sold.
Our highly trained team of support engineers, application scientists and subject-matter experts are wholly dedicated to maximizing your productivity with system service and upgrades, as well as application support and training.