timsTOF Pro Bibliography

 

timsTOF Pro Bibliography  

The timsTOF Pro powered by PASEF® boosts the research capability of the labs having acquired it by offering an unprecedented, uncompromised combination of speed, sensitivity, selectivity and robustness. The reproducible measurement of Collisional Cross Section (CCS) values for every peptide has allowed to develop innovative 4D proteomics™/lipidomics™/metabolomics™ approaches, making the best use of the instrument’s selectivity. New acquisition modes are rolled out on a regular basis, like dia-PASEF® introduced at HUPO 2019. The peer-reviewed communications listed below is a non-exhaustive list from the work initiated on the first instruments, and many more are to come.  

Biology – timsTOF Pro - COVID-19 section

Title Authors Publication Link
Increasing the Throughput of Sensitive Proteomics by PlexDIA Derks, J.; Leduc, A. et al. Nat Biotechnol 2023, 41 (1), 50–59 https://doi.org/10.1038/s41587-022-01389-w
Deep Visual Proteomics Defines Single-Cell Identity and Heterogeneity Mund, A.; Coscia, F. et al. Biotechnol 2022, 40 (8), 1231–1240 https://doi.org/10.1038/s41587-022-01302-5
AI-Driven Deep Visual Proteomics Defines Cell Identity and Heterogeneity Mund, A.; Coscia, F. et al. preprint; Systems Biology 2021 https://doi.org/10.1101/2021.01.25.427969
Ultra-High Sensitivity Mass Spectrometry Quantifies Single-Cell Proteome Changes upon Perturbationn Brunner, A.-D.; Thielert, M. et al. preprint; Systems Biology 2020 https://doi.org/10.1101/2020.12.22.423933
Hyperinflammatory environment drives dysfunctional myeloid cell effector response to bacterial challenge in COVID-19 Mairpady  Shambat, S.; Gómez-Mejia, A. et al. PLoS Pathog 2022, 18 https://doi.org/10.1371/journal.ppat.1010176
Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry Roberts, D.S.; Mann, M.; Ge, Y. et al. preprint; Biochemistry 2022 https://doi.org/10.1101/2022.02.09.479776
Immune response pattern across the asymptomatic, symptomatic and convalescent periods of COVID-19 Chen, Y.; Zhang, N.; Wong, C.C.L. et al. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2022, 1870 https://doi.org/10.1016/j.bbapap.2021.140736
Multi-level inhibition of coronavirus replication by chemical ER stress Shaban, M.S.; Müller, C. et al. Nat Commun 2021, 12, 5536 https://doi.org/10.1038/s41467-021-25551-1
Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective longitudinal study IMPACC Manuscript Writing Team†, on behalf of the IMPACC Network Steering Committee‡ Sci. Immunol. 2021, 6, eabf3733 https://doi.org/10.1126/sciimmunol.abf3733
DIA-Based Proteome Profiling of Nasopharyngeal Swabs from COVID-19 Patients Mun, D.-G.; Vanderboom, P.M. et al. J. Proteome Res. 20, 2021, 4165–4175 https://doi.org/10.1021/acs.jproteome.1c00506
Proteomic Analysis Identifies Prolonged Disturbances in Pathways Related to Cholesterol Metabolism and Myocardium Function in the COVID-19 Recovery Stage Chen, Y.; Yao, H.; Wong, C.C.L. et al. J. Proteome Res 2021 https://doi.org/10.1021/acs.jproteome.1c00054
SARS-CoV-2 infects human pancreatic ß cells and elicits ß cell impairment Wu, C.-T.; Lidsky, P.V.; Jackson, P.K. et al. Cell Metabolism 2021 https://doi.org/10.1016/j.cmet.2021.05.013
Second-Generation Antibodies Neutralize Emerging SARS-CoV-2 Variants of Concern Kovacech, B.; Fialova, L. et al. preprint; Microbiology 2021 https://doi.org/10.1101/2021.06.09.447527
A Blood Atlas of COVID-19 Defines Hallmarks of Disease Severity and Specificity; COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium Ahern, D. J.; Ai, Z.; Fischer, R. et al. preprint; Infectious Diseases (except HIV/AIDS) 2021 https://doi.org/10.1101/2021.05.11.21256877
Systematic Functional Analysis of SARS-CoV-2 Proteins Uncovers Viral Innate Immune Antagonists and Remaining Vulnerabilities Hayn, M.; Hirschenberger, M. et al. Cell Reports 2021, 109126 https://doi.org/10.1016/j.celrep.2021.109126
Large Scale Discovery of Coronavirus-Host Factor Protein Interaction Motifs Reveals SARS-CoV-2 Specific Mechanisms and Vulnerabilities Kruse, T.; Benz, C.; Mann, M. et al. Biochemistry 2021 https://doi.org/10.1101/2021.04.19.440086
The COVIDome Explorer Researcher Portal Sullivan, K. D.; Galbraith, M. D. et al. Allergy and Immunology 2021 https://doi.org/10.1101/2021.03.04.21252945
Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Native Top-Down Mass Spectrometry Roberts, D. S.; Mann, M. W.; Ge, Y. et al. preprint; Biochemistry 2021 https://doi.org/10.1101/2021.02.28.433291
Structural and Functional Characterization of SARS-CoV-2 RBD Domains Produced in Mammalian Cells Gstöttner, C.; Zhang, T.; Wuhrer, M. et al. preprint; Biochemistry 2021 https://doi.org/10.1101/2021.02.23.432424
High-Resolution Longitudinal Serum Proteome Trajectories in COVID-19 Reveal Patients-Specific Seroconversion Geyer, P. E.; Arend, F. M. et al. preprint; Infectious Diseases (except HIV/AIDS) 2021 https://doi.org/10.1101/2021.02.22.21252236
The Host Interactome of Spike Expands the Tropism of SARS-CoV-2 Bamberger, C.; Pankow, S.; Yates, J. et al. preprint; Molecular Biology 2021 https://doi.org/10.1101/2021.02.16.431318
Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients Thomas, T.; Stefanoni, D. et al. Proteome Res. 2020, 19 (11), 4455–4469 https://doi.org/10.1021/acs.jproteome.0c00606
Mass Spectrometric detection of SARS-CoV-2 virus in scrapings of the epithelium of the nasopharynx of infected patients via Nucleocapsid N protein (preprint). Nikolaev, E.; Indeykina, M.; Borchers, C. et al. Molecular Biology 2020 https://doi.org/10.1101/2020.05.24.113043
Immune Suppression in the Early Stage of COVID-19 Disease Tian, W.; Zhang, N.; Wong, C. C. L. et al. Nat Commun 2020, 11 (1), 5859 https://doi.org/10.1038/s41467-020-19706-9
SARS-CoV-2 Induced CYP19A1 Expression in the Lung Correlates with Increased Aromatization of Testosterone-to-Estradiol in Male Golden Hamsters Stanelle-Bertram, S.; Schaumburg, B. et al. preprint; In Review 2020 https://doi.org/10.21203/rs.3.rs-107474/v1
Transcriptional and Proteomic Insights into the Host Response in Fatal COVID-19 Cases Wu, M.; Chen, Y. et al. Proc Natl Acad Sci USA 2020, 117 (45), 28336–28343 https://doi.org/10.1073/pnas.2018030117
Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level D’Alessandro, A.; Thomas, T. et al. Proteome Res. 2020, 19 (11), 4417–4427 https://doi.org/10.1021/acs.jproteome.0c00365

Biology – timsTOF Pro  

Title Authors Publication Link
Oxonium Ion–Guided Optimization of Ion Mobility–Assisted Glycoproteomics on the timsTOF Pro Mukherjee, S.; Jankevics, A. et al. Molecular & Cellular Proteomics 2023, 22 (2), 100486 https://doi.org/10.1016/j.mcpro.2022.100486
Linkage-Specific Identification and Quantification of Sialylated Glycans by TIMS-TOF MS through Conjugation with Metal Complexes Li, Y.; Wang, H. et al. Talanta 2023, 253, 123995 https://doi.org/10.1016/j.talanta.2022.123995
Glycoproteomic Analyses of Influenza A Viruses Using TimsTOF Pro MS Wong, T. L.; Mooney, B. P. et al. Proteome Res. 2023, 22 (1), 62–77 https://doi.org/10.1021/acs.jproteome.2c00469
Benchmarking Commonly Used Software Suites and Analysis Workflows for DIA Proteomics and Phosphoproteomics Lou, R.; Cao, Y. et al. Nat Commun 2023, 14 (1), 94 https://doi.org/10.1038/s41467-022-35740-1
Multi-Omics Based Anti-Inflammatory Immune Signature Characterizes Long COVID-19 Syndrome Kovarik, J. J.; Bileck, A. et al. iScience 2023, 26 (1), 105717 https://doi.org/10.1016/j.isci.2022.105717
Increasing the Throughput of Sensitive Proteomics by PlexDIA Derks, J.; Leduc, A. et al. Nat Biotechnol 2023, 41 (1), 50–59 https://doi.org/10.1038/s41587-022-01389-w
Induction of Amphotericin B Resistance in Susceptible Candida Auris by Extracellular Vesicles Chan, W.; Chow, F. W.-N. et al. Emerging Microbes & Infections 2022, 11 (1), 1900–1909. https://doi.org/10.1080/22221751.2022.2098058
Top-Down Ion Mobility Separations of Isomeric Proteoforms Berthias, F.; Thurman, H. A. et al. Anal. Chem. 2022, acs.analchem.2c02948 https://doi.org/10.1021/acs.analchem.2c02948
HIP1R and Vimentin Immunohistochemistry Predict 1p/19q Status in IDH-Mutant Glioma Felix, M.; Friedel, D. et al. Neuro-Oncology 2022, 24 (12), 2121–2132 https://doi.org/10.1093/neuonc/noac111
CPEB1 Directs Muscle Stem Cell Activation by Reprogramming the Translational Landscape Zeng, W.; Yue, L. et al. Nat Commun 2022, 13 (1), 947 https://doi.org/10.1038/s41467-022-28612-1
CEND1 Deficiency Induces Mitochondrial Dysfunction and Cognitive Impairment in Alzheimer’s Disease Xie, W.; Guo, D. et al. Cell Death Differ 2022, 29 (12), 2417–2428 https://doi.org/10.1038/s41418-022-01027-7
Proteomics Based Markers of Clinical Pain Severity in Juvenile Idiopathic Arthritis Van Der Heijden, H.; Fatou, B. et al. Pediatr Rheumatol 2022, 20 (1), 3 https://doi.org/10.1186/s12969-022-00662-1
A Novel Protein Encoded by ZCRB1-Induced CircHEATR5B Suppresses Aerobic Glycolysis of GBM through Phosphorylation of JMJD5 Song, J.; Zheng, J. et al. J Exp Clin Cancer Res 2022, 41 (1), 171 https://doi.org/10.1186/s13046-022-02374-6
Mass Spectroscopy-Based Proteomics and Metabolomics Analysis of Triple-Positive Breast Cancer Cells Treated with Tamoxifen and/or Trastuzumab Sharaf, B. M.; Giddey, A. D. et al. Cancer Chemother Pharmacol 2022, 90 (6), 467–488 https://doi.org/10.1007/s00280-022-04478-4
Hornerin Deposits in Neuronal Intranuclear Inclusion Disease: Direct Identification of Proteins with Compositionally Biased Regions in Inclusions Park, H.; Yamanaka, T. et al. acta neuropathol commun 2022, 10 (1), 28 https://doi.org/10.1186/s40478-022-01333-8
LKB1 Drives Stasis and C/EBP-Mediated Reprogramming to an Alveolar Type II Fate in Lung Cancer Murray, C. W.; Brady, J. J. et al. Nat Commun 2022, 13 (1), 1090 https://doi.org/10.1038/s41467-022-28619-8
Proximity Proteomics of C9orf72 Dipeptide Repeat Proteins Identifies Molecular Chaperones as Modifiers of Poly-GA Aggregation Liu, F.; Morderer, D. et al. acta neuropathol commun 2022, 10 (1), 22 https://doi.org/10.1186/s40478-022-01322-x
Ibrutinib Reverses IL-6-Induced Osimertinib Resistance through Inhibition of Laminin Α5/FAK Signaling Li, L.; Li, Z. et al. Commun Biol 2022, 5 (1), 155 https://doi.org/10.1038/s42003-022-03111-7
Proteomic Profiling of End-Stage COVID-19 Lung Biopsies Gindlhuber, J.; Tomin, T. et al. Clin Proteom 2022, 19 (1), 46 https://doi.org/10.1186/s12014-022-09386-6
Lima1 Mediates the Pluripotency Control of Membrane Dynamics and Cellular Metabolism Duethorn, B.; Groll, F. et al. Nat Commun 2022, 13 (1), 610 https://doi.org/10.1038/s41467-022-28139-5
Dia-PASEF Data Analysis Using FragPipe and DIA-NN for Deep Proteomics of Low Sample Amounts Demichev, V.; Szyrwiel, L. et al. Nat Commun 2022, 13 (1), 3944 https://doi.org/10.1038/s41467-022-31492-0
Reconstruction and Analysis of a Large-Scale Binary Ras-Effector Signaling Network Catozzi, S.; Ternet, C. et al. Cell Commun Signal 2022, 20 (1), 24 https://doi.org/10.1186/s12964-022-00823-5
Deep Proteome Profiling Reveals Signatures of Age and Sex Differences in Paw Skin and Sciatic Nerve of Naïve Mice Xian, F.; Sondermann, J. R. et al eLife 2022, 11, e81431 https://doi.org/10.7554/eLife.81431
A de Novo MS1 Feature Detector for the Bruker TimsTOF Pro Wilding-McBride, D.; Webb, A. I. PLoS ONE 2022, 17 (11), e0277122 https://doi.org/10.1371/journal.pone.0277122
Subcellular Redox Responses Reveal Different Cu-Dependent Antioxidant Defenses between Mitochondria and Cytosol Zhang, Y.; Wen, M.-H. et al. Metallomics 2022, 14 (11), mfac087 https://doi.org/10.1093/mtomcs/mfac087
Ion Mobility‐resolved Phosphoproteomics with Dia‐PASEF and Short Gradients Oliinyk, D.; Meier, F. Proteomics 2022, 2200032 https://doi.org/10.1002/pmic.202200032
Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus Faecium Strains from Foodstuffs Quintela-Baluja, M.; Jobling, K. et al. IJMS 2022, 23 (22), 13830 https://doi.org/10.3390/ijms232213830
Phenazopyridine Promotes RPS23RG1/Rps23rg1 Transcription and Ameliorates Alzheimer-Associated Phenotypes in Mice Wang, C.; Zhang, Y. et al. Neuropsychopharmacol. 2022, 47 (12), 2042–2050 https://doi.org/10.1038/s41386-022-01373-7
Micro‐pillar Array Columns (ΜPAC): An Efficient Tool for Comparing Tissue and Cultured Cells of Glioblastoma Berg, H. E.; Halldórsson, S. et al. Journal of Chromatography Open 2022, 2, 100047 https://doi.org/10.1016/j.jcoa.2022.100047
Slice-PASEF: Fragmenting All Ions for Maximum Sensitivity in Proteomics Szyrwiel, L.; Sinn, L. et al. preprint; Biochemistry, 2022 https://doi.org/10.1101/2022.10.31.514544
A Comprehensive Study of Gradient Conditions for Deep Proteome Discovery in a Complex Protein Matrix Wei, X.; Liu, P. N. et al. IJMS 2022, 23 (19), 11714 https://doi.org/10.3390/ijms231911714
Proteome-Wide Analysis of the Hippocampus in Adolescent Male Mice with Learning and Memory Impairment Caused by Chronic Ethanol Exposure Liu, D.; Liu, S. et al. Neurobiology of Learning and Memory 2022, 194, 107661 https://doi.org/10.1016/j.nlm.2022.107661
CLE Peptides Join the Plant Longevity Club Han, H.; Zhuang, K. et al. Trends in Plant Science 2022, 27 (10), 961–963 https://doi.org/10.1016/j.tplants.2022.07.001
Proteomic Analysis Reveals Zinc-Finger CCHC-Type Containing Protein 3 as a Factor Inhibiting Virus Infection by Promoting Innate Signaling Chen, X.; Li, Z. et al. Virus Research 2022, 319, 198876 https://doi.org/10.1016/j.virusres.2022.198876
Evaluation of Quantitative Platforms for Single Target Mass Spectrometry Imaging Bowman, A. P.; Sawicki, J. et al. Pharmaceuticals 2022, 15 (10), 1180 https://doi.org/10.3390/ph15101180
Parallelization with Dual-Trap Single-Column Configuration Maximizes Throughput of Proteomic Analysis Kreimer, S.; Haghani, A. et al. Anal. Chem. 2022, 94 (36), 12452–12460 https://doi.org/10.1021/acs.analchem.2c02609
HLAII Peptide Presentation of Infliximab Increases When Complexed with TNF Casasola-LaMacchia, A.; Seward, R. J. et al. Front. Immunol. 2022, 13, 932252 https://doi.org/10.3389/fimmu.2022.932252
Metabolomic and Proteomic Responses of Phaeodactylum Tricornutum to Hypoxia Zhao, P.; Wu, Q. et al. Ocean. Limnol. 2022, 40 (5), 1963–1973 https://doi.org/10.1007/s00343-021-1232-5
Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for Dia-PASEF Skowronek, P.; Thielert, M. et al. Molecular & Cellular Proteomics 2022, 21 (9), 100279 https://doi.org/10.1016/j.mcpro.2022.100279
Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, Whereas Its Activation Triggers Apoptosis Muresan, X. M.; Slabáková, E. et al. The American Journal of Pathology 2022, 192 (9), 1321–1335 https://doi.org/10.1016/j.ajpath.2022.05.009
Discovering the Secret of Diseases by Incorporated Tear Exosomes Analysis via Rapid-Isolation System: ITEARS Hu, L.; Zhang, T. et al. ACS Nano 2022, 16 (8), 11720–11732 https://doi.org/10.1021/acsnano.2c02531
Discovery of a Potent and Selective Degrader for USP7 Pei, Y.; Fu, J. et al. Angewandte Chemie 2022, 134 (33) https://doi.org/10.1002/ange.202204395
TIMSCONVERT: A Workflow to Convert Trapped Ion Mobility Data to Open Data Formats Luu, G. T.; Freitas, M. A et al. Bioinformatics 2022, 38 (16), 4046–4047 https://doi.org/10.1093/bioinformatics/btac419
The Cluster Transfer Function of AtNEET Supports the Ferredoxin–Thioredoxin Network of Plant Cells Zandalinas, S. I.; Song, L. et al. Antioxidants 2022, 11 (8), 1533. https://doi.org/10.3390/antiox11081533
Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS–QTOF Instrument Guergues, J.; Wohlfahrt, J. et al. Proteome Res. 2022, 21 (8), 2036–2044 https://doi.org/10.1021/acs.jproteome.2c00336
Engineering of Succinyl-CoA Metabolism in View of Succinylation Regulation to Improve the Erythromycin Production Ke, X.; Jiang, X. et al. Appl Microbiol Biotechnol 2022, 106 (13), 5153–5165 https://doi.org/10.1007/s00253-022-12060-4
The Succinylome of Pinctada Fucata Martensii Implicates Lysine Succinylation in the Allograft-Induced Stress Response Zhang, M.; Lu, J. Fish & Shellfish Immunology 2022, 127, 585–593 https://doi.org/10.1016/j.fsi.2022.07.009
In-Depth Profiling and Quantification of the Lysine Acetylome in Hepatocellular Carcinoma with a Trapped Ion Mobility Mass Spectrometer Xu, J.; Guan, X. et al. Molecular & Cellular Proteomics 2022, 21 (8), 100255 https://doi.org/10.1016/j.mcpro.2022.100255
Next Generation VAMS®–Trypsin Immobilization for Instant Proteolysis in Bottom-up Protein Determination Reubsaet, L.; Thiede, B. et al. Advances in Sample Preparation 2022, 3, 100027 https://doi.org/10.1016/j.sampre.2022.100027
Coral and It’s Symbionts Responses to the Typical Global Marine Pollutant BaP by 4D-Proteomics Approach Pei, Y.; Chen, S. et al. Environmental Pollution 2022, 307, 119440 https://doi.org/10.1016/j.envpol.2022.119440
Deep Visual Proteomics defines single-cell identity and heterogeneity Mund, A.; Coscia, F. et al. Nat Biotechnol 2022, 40 (8), 1231–1240 https://doi.org/10.1038/s41587-022-01302-5
Targeted Proteomics on Its Way to Discovery Mendes, M. L.; Dittmar, G. Proteomics 2022, 22 (15–16), 2100330 https://doi.org/10.1002/pmic.202100330
Molecular Mechanism of Toxin Neutralization in the HipBST Toxin-Antitoxin System of Legionella Pneumophila Zhen, X.; Wu, Y. et al. Nat Commun 2022, 13 (1), 4333 https://doi.org/10.1038/s41467-022-32049-x
Structural Analyses of Human Ryanodine Receptor Type 2 Channels Reveal the Mechanisms for Sudden Cardiac Death and Treatment Miotto, M. C.; Weninger, G. et al. Sci. Adv. 2022, 8 (29), eabo1272 https://doi.org/10.1126/sciadv.abo1272
Locality-Sensitive Hashing Enables Efficient and Scalable Signal Classification in High-Throughput Mass Spectrometry Raw Data Bob, K.; Teschner, D. et al. BMC Bioinformatics 2022, 23 (1), 287 https://doi.org/10.1186/s12859-022-04833-55
Proteomic Analysis Reveals Key Differences between Squamous Cell Carcinomas and Adenocarcinomas across Multiple Tissues Song, Q.; Yang, Y. et al. Nat Commun 2022, 13 (1), 4167 https://doi.org/10.1038/s41467-022-31719-00
Proteomic Profile of Mouse Oocytes after Vitrification: A Quantitative Analysis Based on 4D Label-Free Technique Zhuan, Q.; Du, X.et al. Theriogenology 2022, 187, 64–73 https://doi.org/10.1016/j.theriogenology.2022.04.028
A Designer Nanoparticle Platform for Controlled Intracellular Delivery of Bioactive Macromolecules: Inhibition of Ubiquitin-Specific Protease 7 in Breast Cancer Cells McClary, W. D.; Catala, A. et al. ACS Chem. Biol. 2022, 17 (7), 1853–1865 https://doi.org/10.1021/acschembio.2c00256
On-Chip Preconcentration Microchip Capillary Electrophoresis Based CE-PRM-LIVE for High-Throughput Selectivity Profiling of Deubiquitinase Inhibitors Zhu, H.; Mellors, J. S. et al. Anal. Chem. 2022, 94 (27), 9508–9513 https://doi.org/10.1021/acs.analchem.2c01337
Ethanolamine‐phosphate on the Second Mannose Is a Preferential Bridge for Some GPI‐anchored Proteins Ishida, M.; Maki, Y.; Ninomiya, A. et al. EMBO Reports 2022, 23 (7) https://doi.org/10.15252/embr.202154352
Cyclic Immonium Ion of Lactyllysine Reveals Widespread Lactylation in the Human Proteome Wan, N.; Wang, N. et al. Nat Methods 2022, 19 (7), 854–864 https://doi.org/10.1038/s41592-022-01523-1
Zwitter-Ionic Monolith-Based Spintip Column Coupled with Evosep One Liquid Chromatography for High-Throughput Proteomic Analysis Su, Y.; Wang, X. et al. Journal of Chromatography A 2022, 1675, 463122 https://doi.org/10.1016/j.chroma.2022.463122
Super-Enhancer Hypermutation Alters Oncogene Expression in B Cell Lymphoma Bal, E.; Kumar, R. et al. Nature 2022, 607 (7920), 808–815 https://doi.org/10.1038/s41586-022-04906-8
Microanalysis of Brain Angiotensin Peptides Using Ultrasensitive Capillary Electrophoresis Trapped Ion Mobility Mass Spectrometry DeLaney, K.; Jia, D. et al. Anal. Chem. 2022, 94 (25), 9018–9025 https://doi.org/10.1021/acs.analchem.2c01062
Sucrose Nonfermenting-1-Related Protein Kinase 1 Regulates Sheath-to-Panicle Transport of Nonstructural Carbohydrates during Rice Grain Filling Hu, Y.; Liu, J. et al. Plant Physiology 2022, 189 (3), 1694–1714 https://doi.org/10.1093/plphys/kiac124
Comparative Analysis of Extracellular Vesicles (EVs) from Human and Feline Plasma Howard, J.; Wynne, K. et al. Sci Rep 2022, 12 (1), 10851 https://doi.org/10.1038/s41598-022-14211-z
Impact of in Vitro Hormone Treatments on the Bibenzyl Production of Radula Complanata Blatt-Janmaat, K.; Neumann, S. et al. Botany 2022, cjb-2022-0048 https://doi.org/10.1139/cjb-2022-0048
Human RIPK3 C-Lobe Phosphorylation Is Essential for Necroptotic Signaling Meng, Y.; Horne, C. R. et al. Cell Death Dis 2022, 13 (6), 1–12 https://doi.org/10.1038/s41419-022-05009-y
Molecular Evidence of Chemical Disguise by the Socially Parasitic Spiny Ant Polyrhachis Lamellidens (Hymenoptera: Formicidae) When Invading a Host Colony Iwai, H.; Mori, M. et al. Front. Ecol. Evol. 2022, 10, 915517 https://doi.org/10.3389/fevo.2022.915517
Targeted Protein Quantitation in Human Body Fluids by Mass Spectrometry Chen, Y.; Liao, W. et al. Mass Spectrometry Reviews 2022 https://doi.org/10.1002/mas.21788
Innate Variability in Physiological and Omics Aspects of the Beta Thalassemia Trait-Specific Donor Variation Effects Anastasiadi, A. T.; Tzounakas, V. L. et al. Front. Physiol. 2022, 13, 907444 https://doi.org/10.3389/fphys.2022.907444
Zinc Is a Master-Regulator of Sperm Function Associated with Binding, Motility, and Metabolic Modulation during Porcine Sperm Capacitation Zigo, M.; Kerns, K. et al. Commun Biol 2022, 5 (1), 1–12 https://doi.org/10.1038/s42003-022-03485-8
Different Oligomeric States of the Tumor Suppressor P53 Show Identical Binding Behavior towards the S100β Homodimer Wei, A. A. J.; Iacobucci, C. et al. ChemBioChem 2022, 23 (11) https://doi.org/10.1002/cbic.202100665
Cryo-EM Structures of Gid12-Bound GID E3 Reveal Steric Blockade as a Mechanism Inhibiting Substrate Ubiquitylation Qiao, S.; Lee, C.-W. et al. Nat Commun 2022, 13 (1), 3041 https://doi.org/10.1038/s41467-022-30803-9
Multimodal Imaging Mass Spectrometry of Murine Gastrointestinal Tract with Retained Luminal Content Guiberson, E. R.; Good, C. J. et al. J. Am. Soc. Mass Spectrom. 2022, 33 (6), 1073–1076 https://doi.org/10.1021/jasms.1c00360
Using Plasma Proteomics to Investigate Viral Infections of the Central Nervous System Including Patients with HIV-Associated Neurocognitive Disorders Ahmed, S.; Viode, A. et al. J. Neurovirol. 2022, 28 (3), 341–354 https://doi.org/10.1007/s13365-022-01077-0
Integrated Insights into the Mechanisms Underlying Sepsis-Induced Myocardial Depression Using a Quantitative Global Proteomic Analysis Yang, N.; Wang, W. et al. Journal of Proteomics 2022, 262, 104599 https://doi.org/10.1016/j.jprot.2022.104599
Human Umbilical Cord Mesenchymal Stem Cell-Derived Treatment of Severe Pulmonary Arterial Hypertension Hansmann, G.; Chouvarine, P. et al. Nat Cardiovasc Res 2022, 1 (6), 568–576 https://doi.org/10.1038/s44161-022-00083-z
Lockd Promotes Myoblast Proliferation and Muscle Regeneration via Binding with DHX36 to Facilitate 5′ UTR RG4 Unwinding and Anp32e Translation Chen, X.; Xue, G. et al. Cell Reports 2022, 39 (10), 110927 https://doi.org/10.1016/j.celrep.2022.110927
Complex Effects of Mg-Biomaterials on the Osteoblast Cell Machinery: A Proteomic Study Cerqueira, A.; García-Arnáez, I. et al. Biomaterials Advances 2022, 137, 212826 https://doi.org/10.1016/j.bioadv.2022.212826
Extracellular Vesicles from Thyroid Cancer Harbor a Functional Machinery Involved in Extracellular Matrix Remodeling Bravo-Miana, R. del C.; Soler, M. F. et al. European Journal of Cell Biology 2022, 101 (3), 151254 https://doi.org/10.1016/j.ejcb.2022.151254
Systematic Identification of the Lysine Lactylation in the Protozoan Parasite Toxoplasma Gondii Zhao, W.; Yu, H. et al. Parasites & Vectors 2022, 15 (1), 180 https://doi.org/10.1186/s13071-022-05315-6
Synthetic Lethality between TP53 and ENDOD1 Tang, Z.; Zeng, M. et al. Nat Commun 2022, 13 (1), 2861 https://doi.org/10.1038/s41467-022-30311-w
Reovirus Μ2 Protein Modulates Host Cell Alternative Splicing by Reducing Protein Levels of U5 SnRNP Core Components Boudreault, S.; Durand, M. et al. Nucleic Acids Research 2022, 50 (9), 5263–5281 https://doi.org/10.1093/nar/gkac272
Essential Role of Cp190 in Physical and Regulatory Boundary Formation Kaushal, A.; Dorier, J. et al. Sci. Adv. 2022, 8 (19), eabl8834 https://doi.org/10.1126/sciadv.abl8834
Inducible Degradation of Dosage Compensation Protein DPY-27 Facilitates Isolation of Caenorhabditis Elegans Males for Molecular and Biochemical Analyses Li, Q.; Kaur, A. et al. G3 Genes|Genomes|Genetics 2022, 12 (5), jkac085 https://doi.org/10.1093/g3journal/jkac085
Time-Related Accurate Investigation of Multicomponent Drug Interventions in Heart Failure Wang, M.; Wu, Y. et al. Phytomedicine Plus 2022, 2 (2), 100242 https://doi.org/10.1016/j.phyplu.2022.100242
Proteomic Analysis of Pollen–Stigma Interaction between Vitis Rotundifolia and Vitis Vinifera Wang, B.; Wu, W. et al. J. Amer. Soc. Hort. Sci. 2022, 147 (3), 152–160 https://doi.org/10.21273/JASHS05153-21
P97 Dysfunction Underlies a Loss of Quality Control of Damaged Membrane Proteins and Promotes Oxidative Stress and Sickling in Sickle Cell Disease Song, A.; Wen, A. Q. et al. The FASEB Journal 2022, 36 (5) https://doi.org/10.1096/fj.202101500RR
Absolute Quantification of Viral Proteins during Single-Round Replication of MDCK Suspension Cells Küchler, J.; Püttker, S. et al. Journal of Proteomics 2022, 259, 104544 https://doi.org/10.1016/j.jprot.2022.104544
P-NCS-Bn-NODAGA as a Bifunctional Chelator for Radiolabeling with the 186Re/99mTc-Tricarbonyl Core: Radiochemistry with Model Complexes and a GRPR-Targeting Peptide Kankanamalage, P.; Hoerres, R. et al. Nuclear Medicine and Biology 2022, 108–109, 1–9 https://doi.org/10.1016/j.nucmedbio.2022.01.004
2 Deoxy-D-Glucose Augments the Mitochondrial Respiratory Chain in Heart Aiestaran-Zelaia, I.; Sánchez-Guisado, M. J. et al. J. Sci Rep 2022, 12 (1), 6890 https://doi.org/10.1038/s41598-022-10168-1
The Meta-Substituted Isomer of TMPyP Enables More Effective Photodynamic Bacterial Inactivation than Para-TMPyP In Vitro Schulz, S.; Ziganshyna, S. et al. Microorganisms 2022, 10 (5), 858 https://doi.org/10.3390/microorganisms10050858
An Anti-Influenza A Virus Microbial Metabolite Acts by Degrading Viral Endonuclease PA Zhao, J.; Wang, J. et al. Nat Commun 2022, 13 (1), 2079 https://doi.org/10.1038/s41467-022-29690-x
Phosphatidylcholines (PCs) Serve as Biomarkers for Prognosis of Esophageal Squamous Cell Carcinoma (ESCC) and Compromise Antitumor Efficacy of Focal Adhesion Kinase (FAK) Inhibitor Zhan, Q.; Chen, J. et al. preprint; In Review, 2022 https://doi.org/10.21203/rs.3.rs-1556187/v1
Development of NanoLuc-Targeting Protein Degraders and a Universal Reporter System to Benchmark Tag-Targeted Degradation Platforms Grohmann, C.; Magtoto, C. M. et al. Nat Commun 2022, 13 (1), 2073 https://doi.org/10.1038/s41467-022-29670-1
Specific and Reversible Enrichment of Early-Stage Glycated Proteome Based on Thiazolidine Chemistry and Palladium-Mediated Cleavage Wu, L.; Fei, W. et al. Anal. Chem. 2022, 94 (13), 5213–5220 https://doi.org/10.1021/acs.analchem.1c03648
Sickle-like Inertial Microfluidic System for Online Rare Cell Separation and Tandem Label-Free Quantitative Proteomics (Orcs-Proteomics) Wang, L.; Abdulla, A. et al. Analytical Chemistry 2022 https://doi.org/10.1021/acs.analchem.2c00679
DNA Damage Contributes to Neurotoxic Inflammation in Aicardi-Goutières Syndrome Astrocytes Giordano, A. M. S.; Luciani, M. et al. Journal of Experimental Medicine 2022, 219 (4), e20211121 https://doi.org/10.1084/jem.20211121
Downregulation of KRAB Zinc Finger Proteins in 5-Fluorouracil Resistant Colorectal Cancer Cells Chauvin, A.; Bergeron, D. et al. BMC Cancer 2022, 22 (1), 363 https://doi.org/10.1186/s12885-022-09417-3
Fritted Tip Capillary Column with Negligible Dead Volume Facilitated Ultrasensitive and Deep Proteomics Yang, Y.; Su, Y. et al. Analytica Chimica Acta 2022, 1201, 339615 https://doi.org/10.1016/j.aca.2022.339615
FAST-IT: F Ind A S Imple T Est — I n T IA (Transient Ischaemic Attack): A Prospective Cohort Study to Develop a Multivariable Prediction Model for Diagnosis of TIA through Proteomic Discovery and Candidate Lipid Mass Spectrometry, Neuroimaging and Machine Learning — Study Protocol Milton, A. G.; Lau, S. et al. BMJ Open 2022, 12 (4), e045908 https://doi.org/10.1136/bmjopen-2020-045908
Mitochondrial Protein Hyperacetylation Underpins Heart Failure with Preserved Ejection Fraction in Mice Liu, X.; Zhang, Y. et al. Journal of Molecular and Cellular Cardiology 2022, 165, 76–85 https://doi.org/10.1016/j.yjmcc.2021.12.015
Proteomic Datasets of HeLa and SiHa Cell Lines Acquired by DDA-PASEF and DiaPASEF Huang, Z.; Kong, W. et al. Data in Brief 2022, 41, 107919 https://doi.org/10.1016/j.dib.2022.107919
Integrative Proteomic and Phosphoproteomic Profiling of Invasive Micropapillary Breast Carcinoma Chen, X.; Lin, Y. et at al. Journal of Proteomics 2022, 257, 104511 https://doi.org/10.1016/j.jprot.2022.104511
Low-Intensity Blast Induces Acute Glutamatergic Hyperexcitability in Mouse Hippocampus Leading to Long-Term Learning Deficits and Altered Expression of Proteins Involved in Synaptic Plasticity and Serine Protease Inhibitors Chen, S.; Siedhoff, H. R. et al. Neurobiology of Disease 2022, 165, 105634 https://doi.org/10.1016/j.nbd.2022.105634
New Insights into the Phosphorylation of the Threonine Motif of the Β1 Integrin Cytoplasmic Domain Böttcher, R. T.; Strohmeyer, N. et al. Life Sci. Alliance 2022, 5 (4), e202101301 https://doi.org/10.26508/lsa.202101301
Proteomic Study of Hepatic Apoptosis Induced by Overexpression of G0S2 Qiu, Y.; Zhou, X. et al. preprint; In Review, 2022 https://doi.org/10.21203/rs.3.rs-1342968/v1
Comprehensive Spectral Libraries for Various Rabbit Eye Tissue Proteomes Qin, G.; Zhang, P. et al. Sci Data 2022, 9 (1), 111 https://doi.org/10.1038/s41597-022-01241-5
Protective Mechanism of Leucine and Isoleucine against H2O2-Induced Oxidative Damage in Bovine Mammary Epithelial Cells Wu, S.; Liu, X. et al. Oxidative Medicine and Cellular Longevity 2022, 2022, 1–22 https://doi.org/10.1155/2022/4013575
Paeoniflorin Upregulates Mitochondrial Thioredoxin of Schwann Cells to Improve Diabetic Peripheral Neuropathy Indicated by 4D Label-Free Quantitative Proteomics Yang, X.; Li, X. et al. Oxidative Medicine and Cellular Longevity 2022, 2022, 1–10 https://doi.org/10.1155/2022/4775645
Chaperone-mediated autophagy controls proteomic and transcriptomic pathways to maintain glioma stem cell activity Auzmendi-Iriarte, J.; Otaegi-Ugartemendia, M. et al. Cancer Res 2022 https://doi.org/10.1158/0008-5472.CAN-21-2161
Reconstruction and analysis of a large-scale binary Ras-effector signaling network Catozzi, S.; Ternet, C. et al. Cell Commun Signal 2022, 20, 24 https://doi.org/10.1186/s12964-022-00823-5
Integrative proteomic and phosphoproteomic profiling of invasive micropapillary breast carcinoma Chen, X.; Lin, Y. et al. Journal of Proteomics 2022, 257 https://doi.org/10.1016/j.jprot.2022.104511
AP-4-mediated axonal transport controls endocannabinoid production in neurons Davies, A.K.; Alecu, J.E. et al. Nat Commun 2022, 13, 1058 https://doi.org/10.1038/s41467-022-28609-w
Combined Impact of Magnetic Force and Spaceflight Conditions on Escherichia coli Physiology Domnin, P.A.; Parfenov, V.A.; Nikolaev, E.N. et al. IJMS 2022, 23, 1837 https://doi.org/10.3390/ijms23031837
DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes Giordano, A.M.S.; Luciani, M. et al. Journal of Experimental Medicine 2022, 219 https://doi.org/10.1084/jem.20211121
Quantitative Proteomics Analysis Expands the Roles of Lysine β-Hydroxybutyrylation Pathway in Response to Environmental β-Hydroxybutyrate Hou, W.; Liu, G. et al. Oxidative Medicine and Cellular Longevity 2022, 1–15 https://doi.org/10.1155/2022/4592170
Diagnostic Ion Data Analysis Reduction (DIDAR) allows rapid quality control analysis and filtering of multiplexed single cell proteomics data Jenkins, C.; Orsburn, B.C. prepint; Biochemistry 2022 https://doi.org/10.1101/2022.02.22.481489
Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains Joshi, R.; Pohl, P. et al. Biophysical Journal 2022, S0006349522001497 https://doi.org/10.1016/j.bpj.2022.02.025
High-light-inducible proteins HliA and HliB: pigment binding and protein–protein interactions Konert, M.M.; Wysocka, A. et al. Photosynth Res 2022 https://doi.org/10.1007/s11120-022-00904-z
Absolute quantification of viral proteins during single-round replication of MDCK suspension cells Küchler, J.; Püttker, S. et al. Journal of Proteomics 2022, 259 https://doi.org/10.1016/j.jprot.2022.104544
Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling Li, L.; Li, Z. et al. Commun Biol 2022, 5, 155 https://doi.org/10.1038/s42003-022-03111-7
Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples by QTOF-HRMS, IM-QTOF-HRMS, and TQMS: Advantages and Disadvantages Lindemann, V.; Schmidt, J. et al. Anal. Chem. 2022, 94, 4209–4217 https://doi.org/10.1021/acs.analchem.1c04254
Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation Liu, F.; Morderer, D. et al. acta neuropathol commun 2022, 10, 22 https://doi.org/10.1186/s40478-022-01322-x
Isoindolines and phthalides from the rhizomes of Ligusticum chuanxiong and their relaxant effects on the uterine smooth muscle Liu, J.; Feng, R. et al. Phytochemistry 2022, 198 https://doi.org/10.1016/j.phytochem.2022.113159
LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer Murray, C.W.; Brady, J.J. et al. Nat Commun 2022, 13, 1090 https://doi.org/10.1038/s41467-022-28619-8
Smart proteolysis samplers for pre‐lab bottom‐up protein analysis – Performance of on‐paper digestion compared to conventional digestion Nguyen, M.T.; Halvorsen, T.G. et al. Separation Science Plus 2022 https://doi.org/10.1002/sscp.202100062
Single Cell Proteomics Using a Trapped Ion Mobility Time-of-Flight Mass Spectrometer Provides Insight into the Post-translational Modification Landscape of Individual Human Cells Orsburn, B.C.; Yuan, Y.; Bumpus, N.N. preprint; Biochemistry 2022 https://doi.org/10.1101/2022.02.12.480144
Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions Park, H.; Yamanaka, T. et al. acta neuropathol commun 2022, 10, 28 https://doi.org/10.1186/s40478-022-01333-8
Elasnin Effectively Eradicates Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Biofilms Sulaiman, J.E.; Long, L. et al. Microbiol Spectr 2022, 10 https://doi.org/10.1128/spectrum.02320-21
Time-related accurate investigation of multicomponent drug interventions in heart failure Wang, M.; Wu, Y. et al. Phytomedicine Plus 2022, 2 https://doi.org/10.1016/j.phyplu.2022.100242
Fritted tip capillary column with negligible dead volume facilitated ultrasensitive and deep proteomics Yang, Y.; Su, Y. et al. Analytica Chimica Acta 2022, 1201 https://doi.org/10.1016/j.aca.2022.339615
CPEB1 directs muscle stem cell activation by reprogramming the translational landscape Zeng, W.; Yue, L. et al. Nat Commun 2022, 13, 947 https://doi.org/10.1038/s41467-022-28612-1
Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro Aballo, T.J.; Roberts, D.S. et al. J. Proteome Res. 2021, 20, 4203–4211 https://doi.org/10.1021/acs.jproteome.1c00446
Analyzing changes in tear proteins of Sjogren’s syndrome patients with timsTOF pro Akkurt Arslan, M.; Kolman, I. et al. Acta Ophthalmologica 2022, 100 https://doi.org/10.1111/j.1755-3768.2022.167
Distribution of proteins in the different parts of the schirmer strip Arslan, M.A.; Kolman, I. et al. Acta Ophthalmologica 2022, 100 https://doi.org/10.1111/j.1755-3768.2022.179
Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces Baniasad, M.; Kim, Y. et al. Anal Bioanal Chem 2022 https://doi.org/10.1007/s00216-022-03885-z
New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain Böttcher, R.T.; Strohmeyer, N. et al. Life Sci. Alliance 2022, 5 https://doi.org/10.26508/lsa.202101301
The Parallel Reaction Monitoring-Parallel Accumulation–Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma Brzhozovskiy, A.; Kononikhin, A et al. Anal. Chem. 2022, 94, 2016–2022 https://doi.org/10.1021/acs.analchem.1c03782
Low-intensity blast induces acute glutamatergic hyperexcitability in mouse hippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity and serine protease inhibitors Chen, S.; Siedhoff, H.R. et al. Neurobiology of Disease 2022, 165 https://doi.org/10.1016/j.nbd.2022.105634
Lima1 mediates the pluripotency control of membrane dynamics and cellular metabolism Duethorn, B.; Groll, F. et al. Nat Commun 2022, 13, 610 https://doi.org/10.1038/s41467-022-28139-5
FASN-dependent de novo lipogenesis is required for brain development Gonzalez-Bohorquez, D.; Gallego López, I.M. et al. Proc Natl Acad Sci USA 2022, 119 https://doi.org/10.1073/pnas.2112040119
p-NCS-Bn-NODAGA as a bifunctional chelator for radiolabeling with the 186Re/99mTc-tricarbonyl core: Radiochemistry with model complexes and a GRPR-targeting peptide Kankanamalage, P.; Hoerres, R. et al. Nuclear Medicine and Biology 2022, 108–109, 1–9 https://doi.org/10.1016/j.nucmedbio.2022.01.004
Enhanced competitive protein exchange at the nano-bio interface enables ultra-deep coverage of the human plasma proteome Hornburg, D.; Ferdosi, S. et al. preprint; Biophysics 2022 https://doi.org/10.1101/2022.01.08.475439
Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF Huang, Z.; Kong, W. et al. Data in Brief 2022, 41 https://doi.org/10.1016/j.dib.2022.107919
Analysis of the molecular mechanism of inosine monophosphate deposition in Jingyuan chicken muscles using a proteomic approach Huang, Z.; Zhang, J. et al. Poultry Science 2022 https://doi.org/10.1016/j.psj.2022.101741
The [2Fe‐2S] protein CISD2 plays a key role in preventing iron accumulation in cardiomyocytes Karmi, O.; Rowland, L. et al. FEBS Letters 2022 https://doi.org/10.1002/1873-3468.14277
Altered glycosylation of several metastasis-associated glycoproteins with terminal GalNAc defines the highly invasive cancer cell phenotype Khosrowabadi, E.; Wenta, T. et al. Oncotarget 2022, 13, 73–89 https://doi.org/10.18632/oncotarget.28167
Mitochondrial protein hyperacetylation underpins heart failure with preserved ejection fraction in mice Liu, X.; Zhang, Y. et al. Journal of Molecular and Cellular Cardiology 2022, 165, 76–85 https://doi.org/10.1016/j.yjmcc.2021.12.015
Ion Mobility Coupled to a Time-of-Flight Mass Analyzer Combined With Fragment Intensity Predictions Improves Identification of Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides Peeters, M.K.R.; Baggerman, G. et al. Front. Cell Dev. Biol. 2021, 9 https://doi.org/10.3389/fcell.2021.720570
Proteomics and Transcriptomics Uncover Key Processes for Elasnin Tolerance in Methicillin-Resistant Staphylococcus aureus Sulaiman, J.E.; Long, L. et al. mSystems 2022 https://doi.org/10.1128/msystems.01393-21
Protein phosphorylation in hemocytes of Fenneropenaeus chinensis in response to white spot syndrome virus infection Tang, X.; Liu, T. et al. Fish & Shellfish Immunology 2022, 122, 106–114 https://doi.org/10.1016/j.fsi.2022.01.038
Niban apoptosis regulator 1 promotes gemcitabine resistance by activating the focal adhesion kinase signaling pathway in bladder cancer Tong, S.; Yin, H. et al. J. Cancer 2022, 13, 1103–1118 https://doi.org/10.7150/jca.66248
Proteomics based markers of clinical pain severity in juvenile idiopathic arthritis Van Der Heijden, H.; Fatou, B.; Steen, H. et al. Pediatr Rheumatol 2022, 20, 3 https://doi.org/10.1186/s12969-022-00662-1
Doxycycline Alters the Porcine Renal Proteome and Degradome during Hypothermic Machine Perfusion van Leeuwen, L.; Venema, L.H. et al. CIMB 2022, 44, 559–577 https://doi.org/10.3390/cimb44020039
Investigation of Effects of the Spectral Library on Analysis of diaPASEF Data Wen, C.; Gan, G. et al. J. Proteome Res. 2021 https://doi.org/10.1021/acs.jproteome.1c00899
Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis Xu, P.; Chen, C. et al. Cell Metabolism 2022, 34 https://doi.org/10.1016/j.cmet.2021.12.019
Proteomic Analysis of Tears and Conjunctival Cells Collected with Schirmer Strips Using timsTOF Pro: Preanalytical Considerations Akkurt Arslan, M.; Kolman, I. et al. Metabolites 2021, 12, 2 https://doi.org/10.3390/metabo12010002
Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics Charkow, J.; Röst, H.L. Anal. Chem. 2021, 93, 16751–16758 https://doi.org/10.1021/acs.analchem.1c01399
OpenCell: proteome-scale endogenous tagging enables the cartography of human cellular organization Cho, N.H.; Cheveralls, K.C.; Mann, M. et al. preprint; Cell Biology 2021 https://doi.org/10.1101/2021.03.29.437450
Covalent Coupling of HIV-1 Glycoprotein Trimers to Biodegradable Calcium Phosphate Nanoparticles via Genetically Encoded Aldehyde-Tags Damm, D.; Kostka, K. et al. Acta Biomaterialia 2021, S1742706121008291 https://doi.org/10.1016/j.actbio.2021.12.022
Comparison of TIMS-PASEF quantitative proteomics data-analysis workflows using FragPipe, DIA-NN, and Spectronaut from a user’s perspective Fernández-Vega, A.; Farabegoli, F. et al. preprint; Molecular Biology 2021 https://doi.org/10.1101/2021.11.29.470373
Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules Fojtík, L.; Fiala, J.; Novák, P. et al. J. Am. Chem. Soc. 2021, 143, 20670–20679 https://doi.org/10.1021/jacs.1c07771
Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples Forinová, M.; Pilipenco, A. et al. ACS Appl. Mater. Interfaces 2021, 13, 60612–60624 https://doi.org/10.1021/acsami.1c16930
PIPP: Improving peptide identity propagation using neural networks Hediyeh-zadeh, S.; Martin, J.; Webb, A.I. et al. preprint; Bioinformatics 2021 https://doi.org/10.1101/2021.12.05.471338
Comprehensive Transcriptome Sequencing of Tanaidacea with Proteomic Evidences for Their Silk Kakui, K.; Fleming, J.F. et al. Genome Biology and Evolution 2021, 13 https://doi.org/10.1093/gbe/evab281
An ultra-sensitive and easy-to-use multiplexed single-cell proteomic analysis Li, C.; Gu, L. et al. preprint; Systems Biology 2022 https://doi.org/10.1101/2022.01.02.474723
Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex Loginov, D.S.; Fiala, J.; Novak, P. et al. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2022, 1870 https://doi.org/10.1016/j.bbapap.2021.140735
Structural amyloid plaque polymorphism is associated with distinct lipid accumulations revealed by trapped ion mobility mass spectrometry imaging Michno, W.; Wehrli, P.M.; Hopf, C. et al. Journal of Neurochemistry 2021 https://doi.org/10.1111/jnc.15557
A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma Pal, S.; Kaplan, J.P. et al. preprint; Cancer Biology 2021 https://doi.org/10.1101/2021.11.30.470644
De Novo Pyrimidine Synthesis is a Targetable Vulnerability in IDH Mutant Glioma Shi, D.D.; Savani, M.R. et al. preprint; Cancer Biology 2021 https://doi.org/10.1101/2021.11.30.470443
Antimicrobial Peptide BCp12 Inhibits Staphylococcus aureus Growth by Altering Lysine Malonylation Levels in the Arginine Synthesis Pathway Shi, Y.; Li, Y. et al. J. Agric. Food Chem. 2021 https://doi.org/10.1021/acs.jafc.1c05894
Application of LC-MS/MS with ion mobility for chemical analysis of propolis extracts with antimicrobial potential Sofrenic, I.; Ljujic, J. et al. J Serb Chem Soc 2021, 86–86 https://doi.org/10.2298/JSC210812086S
Association of Complement and MAPK Activation With SARS-CoV-2–Associated Myocardial Inflammation Weckbach, L.T.; Schweizer, L.; Mann, M. et al. JAMA Cardiol 2021 https://doi.org/10.1001/jamacardio.2021.5133
Investigation of Effects of the Spectral Library on Analysis of diaPASEF Data Wen, C.; Gan, G. et al. J. Proteome Res. 2021 https://doi.org/10.1021/acs.jproteome.1c00899
The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model Wu, D.; Wang, X. et al. BMC Genomics 2021, 22, 892 https://doi.org/10.1186/s12864-021-08211-y
Multifunctional exosome-mimetics for targeted anti-glioblastoma therapy by manipulating protein corona Wu, J.-Y.; Li, Y.-J. et al. J Nanobiotechnol 2021, 19, 405 https://doi.org/10.1186/s12951-021-01153-3
Ultrasensitive Trace Sample Proteomics Unraveled the Protein Remodeling during Mesenchymal–Amoeboid Transition Yang, S.; Xiong, Y. et al. Anal. Chem. 2021 https://doi.org/10.1021/acs.analchem.1c03212
Mitochondrial C1qbp promotes differentiation of effector CD8 + T cells via metabolic-epigenetic reprogramming Zhai, X.; Liu, K. et al. Sci. Adv. 2021, 7 https://doi.org/10.1126/sciadv.abk0490
Effects of dietary selenium on immune function of spleen in mice Zhang, X.; Zhang, L. et al. Journal of Functional Foods 2022, 89 https://doi.org/10.1016/j.jff.2021.104914
Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology Fuchs, T.; Melcher, F. et al. Microb Cell Fact 2021, 20, 205 https://doi.org/10.1186/s12934-021-01692-2
Stability of proteins encapsulated in Michael‐type addition polyethylene glycol hydrogels Ghassemi, Z.; Ruesing, S. et al. Biotechnol Bioeng 2021, 118, 4840–4853 https://doi.org/10.1002/bit.27949
UPLC-MS/MS analysis and biological activity of the potato cyst nematode hatching stimulant, solanoeclepin A, in the root exudate of Solanum spp Guerrieri, A.; Floková, K. et al. Planta 2021, 254, 112 https://doi.org/10.1007/s00425-021-03766-2
Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome Kotova, A.V.; Lobov, A.A. et al. Biomedicines 2021, 9, 1606 https://doi.org/10.3390/biomedicines9111606
Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy Lin, B.; Liu, J. et al. BMC Genomics 2021, 22, 852 https://doi.org/10.1186/s12864-021-08155-3
Proteomic and lipidomic profiling of demyelinating lesions identifies fatty acids as modulators in lesion recovery Penkert, H.; Bertrand, A. et al. Cell Reports 2021, 37 https://doi.org/10.1016/j.celrep.2021.109898
Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice Rabaglino, M.B.; Wakabayashi, M. et al. Mechanisms of Ageing and Development 2021, 200 https://doi.org/10.1016/j.mad.2021.111594
Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation Schreiber, A.; Collins, B.C.; Aebersold, R. et al. Molecular Cell 2021, S109727652100931X https://doi.org/10.1016/j.molcel.2021.10.024
Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia Shangguan, Y.; Wang, Y. et al. J Cell Mol Med 2021, 25, 10614–10626 https://doi.org/10.1111/jcmm.16997
Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants Shen, M.; Gong, X. et al. Anal. Chem. 2021, 93, 14929–14933 https://doi.org/10.1021/acs.analchem.1c03145
Multiomics approach reveals a role of translational machinery in shaping maize kernel amino acid composition Shrestha, V.; Yobi, A. et al. Plant Physiology 2021 https://doi.org/10.1093/plphys/kiab390
A preliminary study of KAT2A on cGAS-related immunity in inflammation amplification of systemic lupus erythematosus Tang, Y.; Li, X. et al. Cell Death Dis 2021, 12, 1036 https://doi.org/10.1038/s41419-021-04323-1
4D-quantitative proteomics signature of asthenozoospermia and identification of extracellular matrix protein 1 as a novel biomarker for sperm motility Yang, J.; Liu, Q. et al. Mol. Omics 2021 https://doi.org/10.1039/D1MO00257K
Proteomic Analysis of Chrysanthemum Lateral Buds after Removing Apical Dominance Based on Label-Free Technology Zheng, S.; Song, J. et al. Phyton 2022, 91, 525–539 https://doi.org/10.32604/phyton.2022.017629
Red Blood Cell Proteasome in Beta-Thalassemia Trait: Topology of Activity and Networking in Blood Bank Conditions Anastasiadi, A.T.; Tzounakas, V.L. et al. Membranes 2021, 11, 716 https://doi.org/10.3390/membranes11090716
Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites Brown, K.A.; Anderson, C.; Ge, Y. et al. Biochemistry 2021 https://doi.org/10.1021/acs.biochem.1c00555
Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization Castro, D.C.; Xie, Y.R.; Sweedler, J.V. et al. Nat Methods 2021, 18, 1233–1238 https://doi.org/10.1038/s41592-021-01277-2
Cathepsin C Is Involved in Macrophage M1 Polarization via p38/MAPK Pathway in Sudden Cardiac Death Dai, J.; Liu, J. et al. Cardiovascular Therapeutics 2021, 1–12 https://doi.org/10.1155/2021/6139732
Cytokine exposure mediates transcriptional activation of the orphan nuclear receptor Nur77 in hematopoietic cells di Martino, O.; Niu, H. et al. Journal of Biological Chemistry 2021, 297, 101240 https://doi.org/10.1016/j.jbc.2021.101240
Plasmodium sporozoites require the protein B9 to invade hepatocytes Fernandes, P.; Loubens, M. et al. preprint; Microbiology 2021 https://doi.org/10.1101/2021.10.25.465731
Musarin, a novel protein with tyrosine kinase inhibitory activity from Trametes versicolor, accepted inhibits colorectal cancer stem cell growth He, Y.; Liu, S. et al. Biomedicine & Pharmacotherapy 2021, 144, 112339 https://doi.org/10.1016/j.biopha.2021.112339
Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria Herbert, C.J.; Labarre-Mariotte, S. et al. Nucleic Acids Research 2021 https://doi.org/10.1093/nar/gkab789
Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis Jin, J.; Duan, S. et al. Journal of Integrative Agriculture 2021, 20, 3209–3221 https://doi.org/10.1016/S2095-3119(20)63573-0
Cell-surface tethered promiscuous biotinylators enable small-scale surface proteomics of human exosomes Kirkemo, L.L.; Elledge, S.K. et al. preprint; Biochemistry 2021 https://doi.org/10.1101/2021.09.22.461393
Loss of the AMD-associated B3GLCT gene affects glycosylation of TSP1 without impairing secretion in retinal pigment epithelial cells 27 Lauwen, S. https://doi.org/10.1016/j.exer.2021.108798
Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet Liu, J.; Song, Y. et al. Foods 2021, 10 https://doi.org/10.3390/foods10102457
Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex Loginov, D.S.; Fiala, J.; Novak, P. et al. preprint; Biochemistry 2021 https://doi.org/10.1101/2021.09.20.461051
Tyrosine phosphorylation of DEPTOR functions as a molecular switch to activate mTOR signaling Gagné, L.; Morin, N. et al. Journal of Biological Chemistry 2021, 297 https://doi.org/10.1016/j.jbc.2021.101291
Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury Ma, Y.; Shi, H. et al. Biomaterials 2021, 279 https://doi.org/10.1016/j.biomaterials.2021.121192
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs Mall, E.M.; Lecanda, A. et al. PLoS ONE 2021, 16 https://doi.org/10.1371/journal.pone.0258427
The social architecture of an in-depth cellular protein interactome Michaelis, A.C.; Brunner, A.-D.; Mann, M. et al. preprint; Systems Biology 2021 https://doi.org/10.1101/2021.10.24.465633
Differential Brain and Cerebrospinal Fluid Proteomic Responses to Acute Prenatal Endotoxin Exposure Muk, T.; Stensballe, A. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-910516/v1
Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N2-Fixing Condition Nisar, A.; Gongye, X. et al. Front. Microbiol. 2021, 12 https://doi.org/10.3389/fmicb.2021.740555
Exploration of Proteomics Analysis of Crop Milk in Pigeons ( Columba livia ) during the Lactation Period Shao, Y.; Ma, W. et al. ACS Omega 2021, 6, 27726–27736 https://doi.org/10.1021/acsomega.1c02977
A stress-reduced passaging technique improves the viability of human pluripotent cells Takahashi, K.; Okubo, C. et al. preprint; Cell Biology 2021 https://doi.org/10.1101/2021.10.12.464142
YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2 Wang, X.; Fan, W. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-910016/v1
Simplifying MS1 and MS2 spectra to achieve lower mass error, more dynamic range, and higher peptide identification confidence on the Bruker timsTOF Pro Wilding-McBride, D.; Dagley, L.F. et al. Bioinformatics 2021 https://doi.org/10.1101/2021.10.18.464737
Global Profiling of Protein Lysine Malonylation in Eucommia ulmoides Leaves Reveals Its Role in Photosynthesis and Metabolism Yao, X.; Shen, C. et al. Plant Mol Biol Rep 2021 https://doi.org/10.1007/s11105-021-01319-1
PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors Zhu, H.; Ficarro, S.B.; Marto, J.A et al. Anal. Chem. 2021, 93, 13791–13799 https://doi.org/10.1021/acs.analchem.1c02349
Integration of Transcriptomic And Proteomic Analyses Reveals Several Levels of Metabolic Regulation In The Excess Starch And Early Senescent Leaf Mutant lses1 In Rice Chen, Z.; Wang, Y. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-805903/v1
Ecological Adaptation and Succession of Human Fecal Microbial Communities in an Automated In Vitro Fermentation System Gnanasekaran, T.; Assis Geraldo, J. et al. mSystems 6 2021 https://doi.org/10.1128/mSystems.00232-21
Spectrum graph-based de-novo sequencing algorithm MaxNovo achieves high peptide identification rates in collisional dissociation MS/MS spectra Gutenbrunner, P.; Kyriakidou, P. et al. preprint; Bioinformatics 2021 https://doi.org/10.1101/2021.09.04.458985
Upregulation of α enolase (ENO1) crotonylation in colorectal cancer and its promoting effect on cancer cell metastasis Hou, J.-Y.; Cao, J. et al. Biochemical and Biophysical Research Communications 2021, 578, 77–83 https://doi.org/10.1016/j.bbrc.2021.09.027
Characterization of the microRNA Transcriptomes and Proteomics of Cochlea Tissue-derived Small Extracellular Vesicles From Different Age of Mice After Birth Jiang, P.; Ma, X. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-823336/v1
Drone honey bees (Apis mellifera ) are disproportionately sensitive to abiotic stressors despite expressing high levels of stress response proteins McAfee, A.; Metz, B. et al. preprint; Cell Biology 2021 https://doi.org/10.1101/2021.08.28.456261
Evaluation of a Bruker timsTOF Pro for Native Mass Spectrometry Panczyk, E.; Snyder, D. et al. preprint; Chemistry 2021 https://doi.org/10.33774/chemrxiv-2021-qr78t
Identification of potential autoantigens in anti-CCP-positive and anti-CCP-negative rheumatoid arthritis using citrulline-specific protein arrays Poulsen, T.B.G.; Damgaard, D.; Stensballe, A. et al. Sci Rep 2021, 11, 17300 https://doi.org/10.1038/s41598-021-96675-z
Thiol and Disulfide Containing Vancomycin Derivatives Against Bacterial Resistance and Biofilm Formation Shchelik, I.S.; Gademann, K. preprint; Microbiology 2021 https://doi.org/10.1101/2021.08.23.457343
Use of PASEF for Accelerated Protein and De Novo Sequencing with High Data Quality Suckau, D.; Evers, W.; Beck, A. et al. 2022, In: Houen, G. (Ed.), Therapeutic Antibodies, Methods in Molecular Biology. Springer US, New York, NY, pp. 207–217 https://doi.org/10.1007/978-1-0716-1450-1_12
Accurate and automated high-coverage identification of chemically cross-linked peptides with MaxLynx Yılmaz, Ş.; Busch, F.; Cox, J. et al. preprint; Bioinformatics 2021 https://doi.org/10.1101/2021.08.26.457759
A Multi-omics Method Enabled by Sequential Metabolomics and Proteomics for Human Pluripotent Stem Cell-derived Cardiomyocytes Bayne, E.F.; Simmons, A.D.; Ge, Y. et al. preprint; Systems Biology 2021 https://doi.org/10.1101/2021.06.23.449630
Synthetic antigen-presenting cells reveal the diversity and functional specialisation of extracellular vesicles composing the fourth signal of T cell immunological synapses Céspedes, P.F.; Jainarayanan, A.; Fischer, R. et al. preprint; Immunology 2021 https://doi.org/10.1101/2021.05.29.445691
Ecological Adaptation and Succession of Human Fecal Microbial Communities in an Automated In Vitro Fermentation System Gnanasekaran, T.; Assis Geraldo, J. et al. mSystems 2021 https://doi.org/10.1128/mSystems.00232-21
Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry Helmer, P.O.; Nordhorn, I.D.; Zubeil, F. et al. Anal. Chem. 2021, 93, 2135–2143 https://doi.org/10.1021/acs.analchem.0c03942
Salivary proteome of aphthous stomatitis reveals the participation of vitamin metabolism, nutrients, and bacteria Hernández-Olivos, R.; Muñoz, M. et al. preprint; Dentistry and Oral Medicine 2021 https://doi.org/10.1101/2021.08.01.21261411
Darwin’s bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression Kono, N.; Ohtoshi, R. et al. preprint; Molecular Biology 2021 https://doi.org/10.1101/2021.07.16.452619
High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry Larson, E.J.; Roberts, D.S.; Ge, Y. et al. Anal. Chem. 2021, 93, 10013–10021 https://doi.org/10.1021/acs.analchem.1c00150
Comparative Proteomic Analysis to Investigate the Pathogenesis of Oral Adenoid Cystic Carcinoma Li, W.; Zhang, Q. et al. ACS Omega 2021, 6, 18623–18634 https://doi.org/10.1021/acsomega.1c01270
Mode of action of Elasnin as biofilm-formation eradicator of Methicillin-Resistant Staphylococcus aureus Long, L.; Sulaiman, J.E. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-752510/v1
Trapped Ion Mobility Spectrometry (TIMS) and Parallel Accumulation – Serial Fragmentation (PASEF) in Proteomics Meier, F.; Park, M.A.; Mann, M. Molecular & Cellular Proteomics 2021, 100138 https://doi.org/10.1016/j.mcpro.2021.100138
Investigating Closed Room Conspirators of Posttraumatic Inflammatory Response: Multi- Omics Profiles of Exosomes Derived from Intestinal Epithelial Cells Under Ischemia Reperfusion Injury Senda, A.; Kojima, M. et al. preprint; In Review 2021 https://doi.org/10.21203/rs.3.rs-792334/v1
Critical Assessment of Metaproteome Investigation (CAMPI): A Multi-Lab Comparison of Established Workflows Van Den Bossche, T.; Kunath, B.J. et al. preprint; Microbiology 2021 https://doi.org/10.1101/2021.03.05.433915
AlphaTims: Indexing trapped ion mobility spectrometry – time of flight data for fast and easy accession and visualization Willems, S.; Voytik, E.; Mann, M. et al. preprint; Bioinformatics 2021 https://doi.org/10.1101/2021.07.27.453933
Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus Xavier, L.R.; Almeida, F.A. et al. preprint; Plant Biology 2021 https://doi.org/10.1101/2021.07.22.453415
Integrative proteomic and metabolomic analyses reveal the mechanism by which bismuth enables Helicobacter pylori eradication Yao, X.; Xiao, S.; Zhou, L. Helicobacter 2021 https://doi.org/10.1111/hel.12846
Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects Yoon, K.A.; Kim, W. et al. Insect Science 2021, 1744-7917.12955 https://doi.org/10.1111/1744-7917.12955
MaxDIA enables library-based and library-free data-independent acquisition proteomics Sinitcyn, P.; Hamzeiy, H.; Cox, J. et al. Nat Biotechnol, 2021 https://doi.org/10.1038/s41587-021-00968-7
A Multi-omics Strategy Enabled by Sequential Metabolomics and Proteomics for Human Pluripotent Stem Cell-derived Cardiomyocytes Bayne, E.F.; Simmons, A.D.; Ge, Y. et al. preprint; Systems Biology, 2021 https://doi.org/10.1101/2021.06.23.449630
Locality-sensitive hashing enables signal classification in high-throughput mass spectrometry raw data at scale Bob, K.; Teschner, D.; Tenzer, S. et al. preprint; Bioinformatics, 2021 https://doi.org/10.1101/2021.07.01.450702
Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device Borotto, N.B.; Graham, K.A. Anal. Chem., 2021 https://doi.org/10.1021/acs.analchem.1c01188
Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry Di Poto, C.; Tian, X. et al. J. Am. Soc. Mass Spectrom., 2021 https://doi.org/10.1021/jasms.0c00467
BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma Mao, C.-G.; Jiang, S. et al. Int. J. Biol. Sci., 2021, 17, 2461–2475 https://doi.org/10.7150/ijbs.61790
Insight into the collagen-degrading activity of a serine protease in the latex of Ficus carica cultivar Masui Dauphine Nishimura, K.; Higashiya, K. et al. Bioscience, Biotechnology, and Biochemistry, 2021, 85, 1147–1156 https://doi.org/10.1093/bbb/zbab025
The differences of muscle proteins between neon flying squid (Ommastrephes bartramii) and jumbo squid (Dosidicus gigas) mantles via physicochemical and proteomic analyses Shui, S.; Yao, H. et al. Food Chemistry, 2021, 364, 130374 https://doi.org/10.1016/j.foodchem.2021.130374
Global profiling of RNA-binding protein target sites by LACE-seq Su, R.; Fan, L.-H.; Wong, C.C.L et al. Nat Cell Biol, 2021, 23, 664–675 https://doi.org/10.1038/s41556-021-00696-9
Physiological and Proteomic Responses of Pitaya to PEG-Induced Drought Stress Wang, A.; Ma, C. et al. Agriculture, 2021, 11, 632 https://doi.org/10.3390/agriculture11070632
A cell-sorting-based nano-scale pipeline for cell-type specific proteomics in plants Wang, H.; Li, R. et al. preprint; Plant Biology, 2021 https://doi.org/10.1101/2021.07.06.451220
Proteomics and bioinformatics reveal insights into neuroinflammation in the acute to subacute phases in rat models of spinal cord contusion injury Yao, X.; Liu, Z. et al. FASEB, 2021, 35 https://doi.org/10.1096/fj.202100081RR
Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans Zeng, L.; Li, X. et al. PLoS Genet, 2021, 17 https://doi.org/10.1371/journal.pgen.1009635
Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients Zhang, W.; Lin, L. et al. J Transl Med, 2021, 19, 273 https://doi.org/10.1186/s12967-021-02939-7
Integrative multiplatform-based molecular profiling of human colorectal cancer reveals proteogenomic alterations underlying mitochondrial inactivation Zhang, W.; Tang, D. et al. Am J Cancer Res, 2021, 11, 2893–2910 https://pubmed.ncbi.nlm.nih.gov/34249434
Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro Aballo, T.J.; Roberts, D.S.; Ge, Y. et al. preprint; Systems Biology, 2021 https://doi.org/10.1101/2021.05.24.445470
DeGlyPHER: an ultrasensitive method for analysis of viral spike N-glycoforms Baboo, S.; Diedrich, J.K.; Yates, J.R. et al. preprint; Biochemistry, 2021 https://doi.org/10.1101/2021.05.13.444041
Identification of proximal SUMO-dependent interactors using SUMO-ID Barroso-Gomila, O.; Trulsson, F.; Azkargorta, M. et al. preprint; Biochemistry, 2020 https://doi.org/10.1101/2020.12.28.424528
Synthetic Antigen Presenting cells reveal the diversity and functional specialisation of extracellular vesicles composing the fourth signal of T cell immunological synapses Céspedes, P.F.; Jainarayanan, A.; Fischer, R. et al. preprint; Immunology, 2021 https://doi.org/10.1101/2021.05.29.445691
Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles De Vrieze, J.; Heyer, R. et al. preprint; Bioengineering, 2021 https://doi.org/10.1101/2021.05.28.446109
A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines Feola, S.; Chiaro, J.; Lehtiö, J. et al. preprint; Cancer Biology, 2021 https://doi.org/10.1101/2021.06.08.447483
PeptiCHIP: a novel microfluidic-based chip platform for tumour antigen landscape identification Feola, S.; Haapala, M.; Lehtiö, J. et al. preprint; In Review, 2021 https://doi.org/10.21203/rs.3.rs-156531/v1
Immunomodulation of T Helper Cells by Tumor Microenvironment in Oral Cancer Is Associated With CCR8 Expression and Rapid Membrane Vitamin D Signaling Pathway Fraga, M.; Yáñez, M. et al. Front. Immunol., 2021, 12 https://doi.org/10.3389/fimmu.2021.643298
Two-dimensional guanidinium-based covalent organic nanosheets for controllable recognition and specific enrichment of global/multi-phosphopeptides He, Y.; Huang, W. et al. Talanta, 2021, 233 https://doi.org/10.1016/j.talanta.2021.122497
A ciliopathy complex builds distal appendages to initiate ciliogenesis Kumar, D.; Rains, A. et al. preprint; Cell Biology, 2021 https://doi.org/10.1101/2021.03.01.433418
High resolution analysis of proteome dynamics during Bacillus subtilis sporulation Tu, Z.; Dekker, H.L.; Kramer, G. et al. preprint; Microbiology, 2021 https://doi.org/10.1101/2021.05.20.445030
LRRC23 is a conserved component of the radial spoke that is necessary for sperm motility and male fertility in mice Zhang, X.; Sun, J. et al. preprint; Cell Biology, 2021 https://doi.org/10.1101/2021.06.01.446532
Ribosome-Inactivating Proteins of Bougainvillea Glabra Uncovered Polymorphism and Active Site Divergence Lin, Y.; Xu, L. et al. Toxins 2021, 13 (5), 331 https://doi.org/10.3390/toxins13050331
Integrated Phospho-Proteogenomic and Single-Cell Transcriptomic Analysis of Meningiomas Establishes Robust Subtyping and Reveals Subtype-Specific Immune Invasion Blume, C.; Dogan, H.; Mann, M. et al. preprint; Genomics, 2021 https://doi.org/10.1101/2021.05.11.443369
Tetrahydrocurcumin Ameliorates Alzheimer’s Pathological Phenotypes by Inhibition of Microglial Cell Cycle Arrest and Apoptosis via Ras/ERK Signaling Xiao, Y.; Dai, Y. et al. Biomedicine & Pharmacotherapy 2021, 139 https://doi.org/10.1016/j.biopha.2021.111651
Hypoxic Acclimation Improves Cardiac Redox Homeostasis and Protects Heart against Ischemia-Reperfusion Injury through Upregulation of O-GlcNAcylation Ou, W.; Liang, Y et al. Redox Biology 2021, 101994 https://doi.org/10.1016/j.redox.2021.101994
DNA Binding Mode, Photophysical Properties and Recommendations for Use of SYBR Gold Kolbeck, P. J.; Vanderlinden, W. et al. Molecular Structure, Nucleic Acids Research 2021, gkab265 https://doi.org/10.1093/nar/gkab265
Comprehensive Plasma Proteomics by Orthogonal Protease Digestion Fossati, A.; Richards, A. L. et al. preprint; Systems Biology, 2021 https://doi.org/10.1101/2021.04.28.441706
Multicomponent Nature Underlies the Extraordinary Mechanical Properties of Spider Dragline Silk Kono, N.; Nakamura, H. et al. preprint; Molecular Biology, 2021 https://doi.org/10.1101/2021.04.22.441049
MiRNAs and Their Gene Targets—A Clue to Differentiate Pregnancies with Small for Gestational Age Newborns, Intrauterine Growth Restriction, and Preeclampsia Timofeeva, A. V.; Fedorov, I. S. et al. Diagnostics 2021, 11 (4), 729 https://doi.org/10.3390/diagnostics11040729
The Autophagy Receptor TAX1BP1 (T6BP) Is a Novel Player in Antigen Presentation by MHC-II Molecules Pereira, M.; Richetta, C.; Pionneau, C. et al. preprint; Immunology, 2021 https://doi.org/10.1101/2021.04.21.440798
Conformational Interconversion of MLKL and Disengagement from RIPK3 Precede Cell Death by Necroptosis Garnish, S. E.; Meng, Y. et al. Nat Commun 2021, 12 (1), 2211 https://doi.org/10.1038/s41467-021-22400-z
Comprehensive Analysis of Lysine Succinylation in Paper Mulberry (Broussonetia Papyrifera) Dong, Y.; Li, P. et al. First BMC Genomics 2021, 22 (1), 255 https://doi.org/10.1186/s12864-021-07567-5
Benefits of Ion Mobility Separation and Parallel Accumulation–Serial Fragmentation Technology on TimsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis Loginov, D. S.; Fiala, J. et al. ACS Omega 2021, 6 (15), 10352–10361 https://doi.org/10.1021/acsomega.1c00732
SLPI Is a Critical Mediator That Controls PTH-Induced Bone Formation Morimoto, A.; Kikuta, J. et al. Nat Commun 2021, 12 (1), 2136 https://doi.org/10.1038/s41467-021-22402-x
Analysis of Peptide Stereochemistry in Single Cells by Capillary Electrophoresis–Trapped Ion Mobility Spectrometry Mass Spectrometry Mast, D. H.; Liao, H.-W.; Sweedler, J. V. et al. Anal. Chem. 2021, 93 (15), 6205–6213 https://doi.org/10.1021/acs.analchem.1c00445
Simplified High-Throughput Methods for Deep Proteome Analysis on the TimsTOF Pro Sandow, J. J.; Infusini, G.; Webb, A. I. et al. preprint; Biochemistry, 2019 https://doi.org/10.1101/657908
Ti4+-Immobilized Hierarchically Porous Zirconium-Organic Frameworks for Highly Efficient Enrichment of Phosphopeptides He, Y.; Zheng, Q. et al. Microchim Acta 2021, 188 (5), 150 https://doi.org/10.1007/s00604-021-04760-x
Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry Based Workflow Charkow, J.; Röst, H. L. preprint; Bioinformatics, 2021 https://doi.org/10.1101/2021.04.01.438072
Elongation Factor EEF2 Kinase and Autophagy Jointly Promote Survival of Cancer Cells Lenchine, R. V.; Rao, S. R. et al. Biochemical Journal 2021, 478 (8), 1547–1569 https://doi.org/10.1042/BCJ20210126
Proteome-Scale Endogenous Tagging Enables the Cartography of Human Cellular Organization Cho, N. H.; Cheveralls, K. C.; Mann, M. et al. OpenCell; preprint; Cell Biology, 2021 https://doi.org/10.1101/2021.03.29.437450
Hippocampal Proteomic Analysis Reveals Activation of Necroptosis and Ferroptosis in a Mouse Model of Chronic Unpredictable Mild Stress-Induced Depression Huang, Y.; Zhu, L. et al. Behavioural Brain Research 2021, 407, 113261 https://doi.org/10.1016/j.bbr.2021.113261
Developing a Multivariable Prediction Model for Functional Outcome after Reperfusion Therapy for Acute Ischaemic Stroke: Study Protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) Multicentre Cohort Study Holliday, E.; Lillicrap, T. et al. BMJ Open 2020, 10 (4), e038180 https://doi.org/10.1136/bmjopen-2020-038180
Cross-Linking/Mass Spectrometry Combined with Ion Mobility on a TimsTOF Pro Instrument for Structural Proteomics Ihling, C. H.; Piersimoni, L. et al. preprint; Biochemistry, 2021 https://doi.org/10.1101/2021.03.26.437136
Temporarily Epigenetic Repression in Bergmann Glia Regulates the Migration of Granule Cells Chen, S.; Zhang, K. et al. Adv. Sci. 2021, 2003164 https://doi.org/10.1002/advs.202003164
Ubiquitin Specific Peptidase 32 Acts as an Oncogene in Epithelial Ovarian Cancer by Deubiquitylating Farnesyl-Diphosphate Farnesyltransferase 1 Nakae, A.; Kodama, M. et al. Biochemical and Biophysical Research Communications 2021, 552, 120–127 https://doi.org/10.1016/j.bbrc.2021.03.049
Open and Easy Access to TimsTOF Raw Data Łącki, M. K.; Startek, M. P. et al. OpenTIMS, TimsPy, and TimsR: J. Proteome Res. 2021, 20 (4), 2122–2129 https://doi.org/10.1021/acs.jproteome.0c00962
High Sensitivity Dia-PASEF Proteomics with DIA-NN and FragPipe Demichev, V.; Yu, F. et al. preprint; Bioinformatics, 2021 https://doi.org/10.1101/2021.03.08.434385
Packed Red Blood Cells Inhibit T-Cell Activation via ROS-Dependent Signaling Pathways Gerner, M. C.; Bileck, A. et al. Journal of Biological Chemistry 2021, 296, 100487 https://doi.org/10.1016/j.jbc.2021.100487
Critical Assessment of Metaproteome Investigation (CAMPI): A Multi-Lab Comparison of Established Workflows Van Den Bossche, T.; Kunath, B. J. et al. preprint; Microbiology, 2021 https://doi.org/10.1101/2021.03.05.433915
A Ciliopathy Complex Builds Distal Appendages to Initiate Ciliogenesis Kumar, D.; Rains, A. et al. preprint; Cell Biology, 2021 https://doi.org/10.1101/2021.03.01.433418
Global Proteomic Analysis of Extracellular Matrix in Mouse and Human Brain Highlights Relevance to Cerebrovascular Disease Pokhilko, A.; Brezzo, G. et al. Cereb Blood Flow Metab 2021, 0271678X2110043 https://doi.org/10.1177/0271678X211004307
Deep Learning the Collisional Cross Sections of the Peptide Universe from a Million Experimental Values Meier, F.; Köhler, N. D. et al. Nat Commun 2021, 12 (1), 1185 https://doi.org/10.1038/s41467-021-21352-8
Comparison of Lipidome Profiles of Caenorhabditis Elegans—Results from an Inter-Laboratory Ring Trial Spanier, B.; Laurençon, A. et al. Metabolomics 2021, 17 (3), 25 https://doi.org/10.1007/s11306-021-01775-6
Insight into the Collagen-Degrading Activity of a Serine Protease in the Latex of Ficus Carica Cultivar Masui Dauphine Nishimura, K.; Higashiya, K. et al. Bioscience, Biotechnology, and Biochemistry 2021, 85 (5), 1147–1156 https://doi.org/10.1093/bbb/zbab025
Genome-Wide CRISPRi Screening Identifies OCIAD1 as a Prohibitin Client and Regulatory Determinant of Mitochondrial Complex III Assembly in Human Cells Vasseur, M. L.; Friedman, J. R. et al. preprint; Cell Biology, 2021 https://doi.org/10.1101/2021.02.16.431450
KCTD19 Associates with ZFP541 and HDAC1 and Is Required for Meiotic Exit in Male Mice Oura, S.; Koyano, T. et al. preprint; Developmental Biology, 2021 https://doi.org/10.1101/2021.02.12.430913
Methylation of KRAS at Lysine 182 and 184 by SETD7 Promotes KRAS Degradation Chiang, C.; Xiao, T. et al. preprint; Cancer Biology, 2021 https://doi.org/10.1101/2021.02.10.429309
A Simple and Robust SDS-Aided Sample Preparation Method for Proteomic Research Gan, G.; Xu, X. et al. SCASP: Molecular & Cellular Proteomics 2021, 20, 100051 https://doi.org/10.1016/j.mcpro.2021.100051
Unraveling the Phosphoproteome with Trapped Ion Mobility Spectrometry (TIMS) Ishihama, Y. Drug Discovery World, January 2021
Acute Post-Injury Blockade of Α2δ-1 Calcium Channel Subunits Prevents Pathological Autonomic Plasticity after Spinal Cord Injury Brennan, F. H.; Noble, B. T. et al. Cell Reports 2021, 34 (4), 108667 https://doi.org/10.1016/j.celrep.2020.108667
Visual Proteomics Defines Cell Identity and Heterogeneity Mund, A.; Coscia, F. et al. AI-Driven Deep preprint; Systems Biology, 2021 https://doi.org/10.1101/2021.01.25.427969
2021_timsTOFPRo_Baoding_JIA447非标定量方法分析小麦茎基腐病抗病相关蛋白-1.Pdf JIN, J.; DUAN, S. et al.
Octenidine-Based Hydrogel Shows Anti-Inflammatory and Protease-Inhibitory Capacities in Wounded Human Skin Seiser, S.; Janker, L. et al. Sci Rep 2021, 11 (1), 32 https://doi.org/10.1038/s41598-020-79378-9
Crystal Structure of Bacterial Cytotoxic Necrotizing Factor CNF Y Reveals Molecular Building Blocks for Intoxication Chaoprasid, P.; Lukat, P. et al. EMBO J 2021, 40 (4) https://doi.org/10.15252/embj.2020105202
Water-Soluble Alkaloids Extracted from Aconiti Radix Lateralis Praeparata Protect against Chronic Heart Failure in Rats via a Calcium Signaling Pathway Xu, X.; Xie, X. et al. Biomedicine & Pharmacotherapy 2021, 135, 111184 https://doi.org/10.1016/j.biopha.2020.111184
Ultra-High Sensitivity Mass Spectrometry Quantifies Single-Cell Proteome Changes upon Perturbation Brunner, A.-D.; Thielert, M. et al. preprint; Systems Biology, 2020 https://doi.org/10.1101/2020.12.22.423933
Structure of the Neurotensin Receptor 1 in Complex with β-Arrestin 1 Huang, W.; Masureel, M. et al. Nature 2020, 579 (7798), 303–308 https://doi.org/10.1038/s41586-020-1953-1
A CRISPR-Based Genome-Wide Screen for Adipogenesis Reveals New Insights into Mitotic Expansion and Lipogenesis Hilgendorf, K. I.; Johnson, C. T. et al. preprint; Molecular Biology, 2020 https://doi.org/10.1101/2020.07.13.201038
Divergent Molecular Signatures of Regeneration and Fibrosis during Wound Repair Mascharak, S.; desJardins-Park, H. E. et al. preprint; Cell Biology, 2020 https://doi.org/10.1101/2020.12.17.423181
DiaPASEF: Parallel Accumulation–Serial Fragmentation Combined with Data-Independent Acquisition Meier, F.; Brunner, A.-D. et al. Nat Methods 2020, 17 (12), 1229–1236 https://doi.org/10.1038/s41592-020-00998-0
Targeted Proteomics Acquisition on a TIMS-QTOF Lesur, A.; Schmit, P.-O. et al. Highly Multiplexed Anal. Chem. 2020, acs.analchem.0c03180 https://doi.org/10.1021/acs.analchem.0c03180
Identification of Proximal SUMO-Dependent Interactors Using SUMO-ID Barroso-Gomila, O.; Trulsson, F. et al. preprint; Biochemistry, 2020 https://doi.org/10.1101/2020.12.28.424528
In-Depth Proteomic Analysis of Plasmodium Berghei Sporozoites Using Trapped Ion Mobility Spectrometry with Parallel Accumulation-Serial Fragmentation Hamada, S.; Pionneau, C. et al. preprint; Microbiology, 2020 https://doi.org/10.1101/2020.11.26.400192
Licorice Ameliorates Cisplatin-Induced Hepatotoxicity Through Antiapoptosis, Antioxidative Stress, Anti-Inflammation, and Acceleration of Metabolism Man, Q.; Deng, Y. et al. Front. Pharmacol. 2020, 11, 563750 https://doi.org/10.3389/fphar.2020.563750
Multi-Omics Profiling of Living Human Pancreatic Islet Donors Reveals Heterogeneous Beta Cell Trajectories toward Type 2 Diabetes Wigger, L.; Barovic, M. et al. preprint; Bioinformatics, 2020 https://doi.org/10.1101/2020.12.05.412338
Nuclear Receptor NHR-49 Promotes Peroxisome Proliferation to Compensate for Aldehyde Dehydrogenase Deficiency in C. Elegans Zeng, L.; Li, X. et al. preprint; Cell Biology, 2020 https://doi.org/10.1101/2020.12.04.411637
O-Acetylated Chemical Reporters of Glycosylation Can Display Metabolism-Dependent Background Labeling of Proteins but Are Generally Reliable Tools for the Identification of Glycoproteins Darabedian, N.; Yang, B. et al. Front. Chem. 2020, 8, 318 https://doi.org/10.3389/fchem.2020.00318
OP7, a Novel Influenza A Virus Defective Interfering Particle: Production, Purification, and Animal Experiments Demonstrating Antiviral Potential Hein, M. D.; Kollmus, H. et al. Appl Microbiol Biotechnol 2020 https://doi.org/10.1007/s00253-020-11029-5
Serine 165 Phosphorylation of SHARPIN Regulates the Activation of NF-ΚB Thys, A.; Trillet, K. et al. preprint; Immunology, 2020 https://doi.org/10.1101/2020.07.02.184085
The MPK 8‐ TCP 14 Pathway Promotes Seed Germination in Arabidopsis Zhang, W.; Cochet, F. et al. Plant J 2019, 100 (4), 677–692 https://doi.org/10.1111/tpj.14461
The Marine Bivalve Molluscs Pathogen Vibrio Neptunius Produces the Siderophore Amphibactin Which Is Widespread in Molluscs Microbiota Galvis, F.; Ageitos, L. et al. Environ Microbiol 2020, 1462-2920.15312 https://doi.org/10.1111/1462-2920.15312
The Prefoldin Complex Stabilizes the von Hippel-Lindau Protein against Aggregation and Degradation Chesnel, F.; Couturier, A. et al. PLoS Genet 2020, 16 (11), e1009183 https://doi.org/10.1371/journal.pgen.1009183
The Role of Wnt/β-Catenin Pathway Mediators in Aortic Valve Stenosis Khan, K.; Yu, B. et al. Front. Cell Dev. Biol. 2020, 8, 862 https://doi.org/10.3389/fcell.2020.00862
A Cross-Talk between Epithelium and Endothelium Mediates Human Alveolar–Capillary Injury during SARS-CoV-2 Infection Wang, P.; Luo, R. et al. Cell Death Dis 2020, 11 (12), 1042 https://doi.org/10.1038/s41419-020-03252-9
A. ABPP-HT - High-Throughput Activity-Based Profiling of Deubiquitylating Enzyme Inhibitors in a Cellular Context Jones, H.; Heilig, R. et al. Pinto-Fernandez, preprint; Biochemistry, 2020 https://doi.org/10.1101/2020.12.10.419499
Antagonistic Regulation by CPN60A and CLPC1 of TRXL1 That Regulates MDH Activity Leading to Plant Disease Resistance and Thermotolerance Pant, B. D.; Oh, S. et al. Cell Reports 2020, 33 (11), 108512 https://doi.org/10.1016/j.celrep.2020.108512
Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer Wang, Y.; Zhang, L. et al. Cell Chemical Biology 2020, 27 (11), 1359-1370.e8 https://doi.org/10.1016/j.chembiol.2020.06.011
Glass Fiber-Supported Hybrid Monolithic Spin Tip for Enrichment of Phosphopeptides from Urinary Extracellular Vesicles Zhang, H.; Deng, Y. et al. Anal. Chem. 2020, 92 (21), 14790–14797 https://doi.org/10.1021/acs.analchem.0c03557
Effect of (R)‐salbutamol on the Switch of Phenotype and Metabolic Pattern in LPS‐induced Macrophage Cells Wang, S.; Liu, F. et al. Cell Mol Med 2020, 24 (1), 722–736 https://doi.org/10.1111/jcmm.14780
Label-Free Quantitative Phosphoproteomics Reveals Signaling Dynamics Involved in Embryogenic Competence Acquisition in Sugarcane Almeida, F. A.; Passamani, L. Z. et al. Proteome Res. 2020, 19 (10), 4145–4157 https://doi.org/10.1021/acs.jproteome.0c00652
The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase1 Lackus, N. D.; Müller, A. et al. Plant Physiol. 2020, 183 (1), 137–151 https://doi.org/10.1104/pp.19.01447
Identification of Markers of Relapse in EAE Using High-Resolution Quantitative Mass Spectrometry Chase, C. A.; Trementin, G. et al. Immunol. 2020, 204 (1 Supplement), 160.21
LUZP1, a Novel Regulator of Primary Cilia and the Actin Cytoskeleton, Is a Contributing Factor in Townes-Brocks Syndrome Bozal-Basterra, L.; Gonzalez-Santamarta, M. et al. eLife 2020, 9, e55957 https://doi.org/10.7554/eLife.55957
Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment Hou, P.; Luo, L. et al. Molecular Cell 2020, 78 (6), 1192-1206.e10 https://doi.org/10.1016/j.molcel.2020.05.004
Feature-Based Molecular Networking in the GNPS Analysis Environment Nothias, L.-F.; Petras, D. et al. Nat Methods 2020, 17 (9), 905–908 https://doi.org/10.1038/s41592-020-0933-6
Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18 F-Labeled FAP Inhibitor Toms, J.; Kogler, J. et al. Nucl Med 2020, 61 (12), 1806–1813 https://doi.org/10.2967/jnumed.120.242958
Effects of a Pyroglutamyl Pentapeptide Isolated from Fermented Barley Extract on Atopic Dermatitis-like Skin Lesions in Hairless Mouse Maruoka, N.; Watanabe, B. et al. Bioscience, Biotechnology, and Biochemistry 2020, 84 (8), 1696–1705 https://doi.org/10.1080/09168451.2020.1762480
Accelerating Protein Biomarker Discovery and Translation from Proteomics Research for Clinical Utility Chen, J.; Zheng, N. Bioanalysis 2020, 12 (20), 1469–1481 https://doi.org/10.4155/bio-2020-0198
Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS Schroeder, M.; Meyer, S. W. et al. Metabolites 2019, 10 (1), 13 https://doi.org/10.3390/metabo10010013
Dynamic Rewiring of the Human Interactome by Interferon Signaling Kerr, C. H.; Skinnider, M. A. et al. Genome Biol 2020, 21 (1), 140 https://doi.org/10.1186/s13059-020-02050-y
The Impact of AckA, Pta, and AckA-Pta Mutations on Growth, Gene Expression and Protein Acetylation in Escherichia Coli K-12 Schütze, A.; Benndorf, D. et al. Front. Microbiol. 2020, 11, 233 https://doi.org/10.3389/fmicb.2020.00233
Arachidyl Amido Cholanoic Acid Improves Liver Glucose and Lipid Homeostasis in Nonalcoholic Steatohepatitis via AMPK and MTOR Regulation Fernández-Ramos, D.; Lopitz-Otsoa, F. et al. MWJG 2020, 26 (34), 5101–5117 https://doi.org/10.3748/wjg.v26.i34.5101
Semiquantitative Proteomic Research of Protein Plasma Profile of Volunteers in 21-Day Head-Down Bed Rest Kashirina, D. N.; Brzhozovskiy, A. G. et al. Front. Physiol. 2020, 11, 678 https://doi.org/10.3389/fphys.2020.00678
An Effector Caspase Sp-Caspase First Identified in Mud Crab Scylla Paramamosain Exhibiting Immune Response and Cell Apoptosis Li, J.; Dong, L. et al. Fish & Shellfish Immunology 2020, 103, 442–453 https://doi.org/10.1016/j.fsi.2020.05.045
Developing a Multivariable Prediction Model for Functional Outcome after Reperfusion Therapy for Acute Ischaemic Stroke: Study Protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) Multicentre Cohort Study Holliday, E.; Lillicrap, T. et al. Levi, CBMJ Open 2020, 10 (4), e038180 https://doi.org/10.1136/bmjopen-2020-038180
Prenatal Endotoxin Exposure Induces Fetal and Neonatal Renal Inflammation via Innate and Th1 Immune Activation in Preterm Pigs Muk, T.; Jiang, P.-P. et al. Front. Immunol. 2020, 11, 565484 https://doi.org/10.3389/fimmu.2020.565484
Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy Wu, W.; Zhou, Q. et al. Cell 2020, 182 (4), 855-871.e23 https://doi.org/10.1016/j.cell.2020.07.018
Identification of Modified Peptides Using Localization-Aware Open Search Yu, F.; Teo, G. C. et al. INat Commun 2020, 11 (1), 4065 https://doi.org/10.1038/s41467-020-17921-y
Connecting the Dots on Vertical Transmission of SARS-CoV-2 Using Protein-Protein Interaction Network Analysis – Potential Roles of Placental ACE2 and ENDOU Jing, H.; Ackerman, W. E. et al. Placenta 2021, 104, 16–19 https://doi.org/10.1016/j.placenta.2020.11.001
Arachidyl Amido Cholanoic Acid Improves Liver Glucose and Lipid Homeostasis in Nonalcoholic Steatohepatitis via AMPK and MTOR Regulation Fernández-Ramos, D.; Lopitz-Otsoa, F. et al. WJG 2020, 26 (34), 5101–5117 https://doi.org/10.3748/wjg.v26.i34.5101
Deep learning the collisional cross sections of the peptide universe from a million training samples (preprint) Meier, F., Köhler, N.D. et al. Systems Biology, 2021 https://doi.org/10.1101/2020.05.19.102285
Benefits of Collisional Cross Section Assisted Precursor Selection (Caps-PASEF) for Cross-Linking Mass Spectrometry Steigenberger, B.; van den Toorn, H. et al. Mol Cell Proteomics 2020, mcp https://doi.org/10.1074/mcp.RA120.002094
Ethanolamine Phosphate on the Second Mannose as Bridge in GPI Anchored Proteins: Towards Understanding Inherited PIGG Deficiency Ishida, M.; Maki, Y. et al. preprint; Molecular Biology, 2020 https://doi.org/10.1101/2020.11.26.399477
Phosphorylation profile of human AQP2 in urinary exosomes by LC–MS/MS phosphoproteomic analysis Sakai, M., Yamamoto, K. et al. Clin Exp Nephrol, 2020 https://doi.org/10.1007/s10157-020-01899-4
Enrichment-Free Identification of Native Definitive (EnFIND) O-glycoproteome of antibodies in autoimmune diseases (preprint) Sun, X., Cheng, J. et al. Systems Biology, 2020 https://doi.org/10.1101/2020.07.15.204511
Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant (preprint) Yu, F., Haynes, S.E. et al. Bioinformatics, 2020 https://doi.org/10.1101/2020.03.19.999334
Cytoplasmic MRNA Recapping Has Limited Impact on Proteome Complexity Agana, B. A.; Wysocki, V. H. et al. Open Biol. 2020, 10 (11), 200313 https://doi.org/10.1098/rsob.200313
Proteomic profiling of mitochondrial-derived vesicles in brain reveals enrichment of respiratory complex sub-assemblies and small TIM chaperones (preprint) Roberts, R.F., Bayne, A.N. et al. Biochemistry, 2020 https://doi.org/10.1101/2020.07.06.189993
c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3 Ma, H., Zhang, J. et al. Cell Reports 2020, 30, 4235-4249.e6 https://doi.org/10.1016/j.celrep.2020.03.005
Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response Li, M., Shu, H.-B. Protein Cell 2020, 11, 584–599 https://doi.org/10.1007/s13238-020-00729-3
An intracellular membrane protein GEP1 regulates xanthurenic acid induced gametogenesis of malaria parasites Jiang, Y., Wei, J. et al. Nat Commun 2020, 11, 1764 https://doi.org/10.1038/s41467-020-15479-3
Quantitatively profiling acetylome of DNA repair proteins in early DNA damage (preprint) Li, S., Zhou, L. et al. In Review, 2020 https://doi.org/10.21203/rs.3.rs-44043/v1
MaxQuant software for ion mobility enhanced shotgun proteomics Prianichnikov, N., Koch, H. et al. Mol Cell Proteomics, 2020 https://doi.org/10.1074/mcp.TIR119.001720
UBB pseudogene 4 encodes functional ubiquitin variants Dubois, M.-L., Meller, A. et al. Nat Commun 2020, 11, 1306 https://doi.org/10.1038/s41467-020-15090-6
MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas (preprint) Tsugawa, H., Ikeda, K. et al. Bioinformatics, 2020 https://doi.org/10.1101/2020.02.11.944900
Characterization and regulation of extracellular vesicles in the lumen of the ovine uterus O’Neil, E.V., Burns, G.W. et al. Biology of Reproduction 2020, 102, 1020–1032 https://doi.org/10.1093/biolre/ioaa019
Low collision energy fragmentation in structure-specific glycoproteomics analysis Sanda, M., Benicky, J. et al. Anal. Chem. 2020 https://doi.org/10.1021/acs.analchem.0c00519
Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Neumann, E.K., Migas, L.G. et al. Mass Spectrometry n.d., 9
Extending the Separation Space with Trapped Ion Mobility Spectrometry Improves the Accuracy of Isobaric Tag-based Quantitation in Proteomic LC/MS/MS Ogata, K., Ishihama, Y. Anal. Chem. 2020 https://doi.org/10.1021/acs.analchem.0c01695
An effector caspase Sp-caspase first identified in mud crab Scylla paramamosain exhibiting immune response and cell apoptosis Li, J., Dong, L. et al. Fish & Shellfish Immunology 2020, S1050464820303715 https://doi.org/10.1016/j.fsi.2020.05.045
Exploration of human cerebrospinal fluid: A large proteome dataset revealed by trapped ion mobility time-of-flight mass spectrometry Macron, C., Lavigne, R. et al. Data in Brief 2020, 31, 105704 https://doi.org/10.1016/j.dib.2020.105704
Developing a multivariable prediction model for functional outcome after reperfusion therapy for acute ischaemic stroke: study protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) multicentre cohort study Holliday, E., Lillicrap, T. et al. BMJ Open 2020, 10, e038180 https://doi.org/10.1136/bmjopen-2020-038180
Biallelic variants in SLC35C1 as a cause of isolated short stature with intellectual disability Knapp, K.M., Luu, R. et al. J Hum Genet, 2020 https://doi.org/10.1038/s10038-020-0764-4
Quantitative Proteomic Analysis of Chikungunya Virus-Infected Aedes aegypti Reveals Proteome Modulations Indicative of Persistent Infection Cui, Y., Liu, P. et al. J. Proteome Res. 2020 https://doi.org/10.1021/acs.jproteome.0c00173
Relative Quantitation of Subclass-Specific Murine IgG Fc N -Glycoforms by Multiple Reaction Monitoring Han, J., Liu, Q. et al. ACS Omega 2020, 5, 8564–8571 https://doi.org/10.1021/acsomega.9b04412
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts Vasilopoulou, C.G., Sulek, K. et al. Nat Commun 2020, 11, 331 https://doi.org/10.1038/s41467-019-14044-x
In-depth proteomics and natural peptidomics analyses reveal antibacterial peptides in human endometrial fluid Azkargorta, M., Bregón-Villahoz, M. et al. Journal of Proteomics 2020, 103652 https://doi.org/10.1016/j.jprot.2020.103652
The Complex Response of Free and Bound Amino Acids to Water Stress During the Seed Setting Stage in Arabidopsis Yobi, A., Bagaza, C. et al. Plant J 2020, tpj.14668 https://doi.org/10.1111/tpj.14668
Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis Giorgetti, J., Beck, A. et al. Mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182, 113107 https://doi.org/10.1016/j.jpba.2020.113107
Differential Post-Translational Amino Acid Isomerization Found among Neuropeptides in Aplysia californica Mast, D.H., Checco, J.W. et al. ACS Chem. Biol. 2020 https://doi.org/10.1021/acschembio.9b00910
Identification of 56 Proteins Involved in Embryo–Maternal Interactions in the Bovine Oviduct Banliat, C., Tsikis, G. et al. IJMS 2020, 21, 466 https://doi.org/10.3390/ijms21020466
Parallel accumulation – serial fragmentation combined with data-independent acquisition (diaPASEF): Bottom-up proteomics with near optimal ion usage Meier, F.; Brunner A. et al. bioRxiv 656207 https://doi.org/10.1101/656207
Simplified high-throughput methods for deep proteome analysis on the timsTOF Pro Sandow, J. J, Infusini, G. et al. Biochemistry, 2019, doi:10.1101/657908
Cathepsin B/ SAPC inhibition deregulates apoptosis-related proteins in neuronal cells exposed to supernatants from HIV-infected macrophages Melendez L, PhD , Zenon-Melendez C, et al. J Biomol Tech. 2020, 31(Suppl):S19
Trapped ion mobility spectrometry (TIMS) and parallel accumulation - serial fragmentation (PASEF) enable in-depth lipidomics from minimal sample amounts Vasilopoulou, C. G. et al. Systems Biology, 2019, doi:10.1101/654491
Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions Carreras-González, A., Barriales, D. et al. PLoS Pathog 2019, 15, e1008163 https://doi.org/10.1371/journal.ppat.1008163
The MPK8-TCP14 pathway promotes seed germination in Arabidopsis Zhang, W.; Cochet, F. et al. The Plant Journal, 2019 https://doi.org/10.1111/tpj.14461
Expression of a dominant‐negative AtNEET‐H89C protein disrupts iron‐sulfur metabolism and iron homeostasis in Arabidopsis Zandalinas. S.; Song, L. et al. The Plant Journal, 2019 https://doi.org/10.1111/tpj.14581
Chronic Elevation of Endothelin-1 Alone May Not Be Sufficient to Impair Endothelium-Dependent Relaxation Grunewald, Z. I.; Jurrissen, T. J. et al. Hypertension, 2019 https://doi.org/10.1161/HYPERTENSIONAHA.119.13676
Characterization of an evolutionarily conserved calcitonin signalling system in a lophotrochozoan, the Pacific oyster (Crassostrea gigas) Schwartz, J.; Réalis-Doyelle, E. et al. Journal of Experimental Biology, 2019 https://doi:10.1242/jeb.201319
Metal–peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers Sawada, T. et al. Nat Commun 2019, 10, 921
Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry Jeanne Dit Fouque, K.; Fernandez-Lima, F TrAC Trends in Analytical Chemistry 2019, 116, 308–315 https://doi.org/10.1016/j.trac.2019.04.010
Mass spectrometry analysis of mouse hematopoietic stem cells and their progenitors reveals differential expression within and between proteome and transcriptome throughout adult and aged hematopoiesis (preprint) Zaro, B.W.; Noh, J.J. et al. Cell Biology, 2019 https://doi.org/10.1101/836692
A Thermogenic-Like Brown Adipose Tissue Phenotype Is Dispensable for Enhanced Glucose Tolerance in Female Mice Winn, N. C. et al. Diabetes 68, 1717–1729 (2019). doi:10.1002/cbic.201900276
Modulation and Visualization of EF‐G Power Stroke During Ribosomal Translocation Yin, H.; Gavriliuc, M. et al. ChemBioChem cbic.201900276 (2019)
Positional effects of premature termination codons on the biochemical and biophysical properties of CFTR Yeh, J.; Hwang, T. J Physiol JP278418 (2019). doi:10.1113/JP278418
timsTOF (Native ESI): Imidazole-modified G-quadruplex DNA as metal-triggered peroxidase Punt PM; Clever GH Chem Sci. 2019 Jan 7;10(8):2513-2518. doi: 10.1039/c8sc05020a. eCollection 2019 Feb 28
Protein 18 Is Involved in Chloroplast Function and Thylakoid Formation Espinoza-Corral, R.; Heinz, S. et al. Plastoglobular Journal of Experimental Botany 2019, 70 (15), 3981–3993 https://doi.org/10.1093/jxb/erz177
SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer Lopitz-Otsoa, F.; Delgado, T. C. et al. JoVE 2019, No. 153, 60098 https://doi.org/10.3791/60098
Methods and Guidelines for Measurement of Glucagon in Plasma Holst, J. J.; Wewer Albrechtsen, N. J. IJMS 2019, 20 (21), 5416 https://doi.org/10.3390/ijms20215416
Sclerotinia Sclerotiorum Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones Chen, J.; Ullah, C. et al. Plant Physiol. 2019, 180 (4), 1975–1987 https://doi.org/10.1104/pp.19.00461
A. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms Garabedian, A.; Baird, M. A. et al. Anal. Chem. 2018, 90 (4), 2918–2925 https://doi.org/10.1021/acs.analchem.7b05224
Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer Meier, F.; Brunner, A.D. et al. Mol Cell Proteomics. 2018 Dec;17(12):2534-2545
Parallel accumulation – serial fragmentation (PASEF): Multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device Meier, F.; Beck, S. et al. J Proteome Res. 2015 Dec 4;14(12):5378-87

Chemistry (timsTOF Pro / timsTOF)

Title Authors Publication Link
Development of Approach for Flavonoid Profiling of Biotechnological Raw Materials IRIS SIBIRICA L. by HPLC with High‐resolution Tandem Mass Spectrometry Karpitskiy, D. A.; Bessonova, E. A. et al. Phytochemical Analysis 2022, 33 (6), 869–878 https://doi.org/10.1002/pca.3135
Ordered Micropattern Arrays Fabricated by Lung-Derived DECM Hydrogels for Chemotherapeutic Drug Screening Zhu, X.; Li, Y. et al. Materials Today Bio 2022, 15, 100274 https://doi.org/10.1016/j.mtbio.2022.100274
Dual-Resolving of Positional and Geometric Isomers of C=C Bonds via Bifunctional Photocycloaddition-Photoisomerization Reaction System Feng, G.; Gao, M.; et al. Nat Commun 2022, 13 (1), 2652 https://doi.org/10.1038/s41467-022-30249-z
Development of Disulfide-Functionalized Peptides Covalently Binding G Protein-Coupled Receptors Einsiedel, J.; Schmidt, M. F. et al. Bioorganic & Medicinal Chemistry 2022, 61, 116720 https://doi.org/10.1016/j.bmc.2022.116720
Isoindolines and phthalides from the rhizomes of Ligusticum chuanxiong and their relaxant effects on the uterine smooth muscle Liu, J., Feng, R. et al. Phytochemistry 2022, 198, 113159 https://doi.org/10.1016/j.phytochem.2022.113159
Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants Shen, M., Gong. X. et al. Anal. Chem. 2021, 93, 45, 14929–14933 https://doi.org/10.1021/acs.analchem.1c03145
Trapped Ion Mobility Incorporated in LC–HRMS Workflows as an Integral Analytical Platform of High Sensitivity: Targeted and Untargeted 4D-Metabolomics in Extra Virgin Olive Oil Drakopoulou, S.K.; Damalas, D.E. et al. J. Agric. Food Chem. 2021, 69, 15728–15737 https://doi.org/10.1021/acs.jafc.1c04789
Feature-based molecular networking in the GNPS analysis environment Nothias, L.-F.; Petras, D. et al. Nat Methods 2020, 17, 905–908 https://doi.org/10.1038/s41592-020-0933-6
Facile synthesis of Ti4+-immobilized magnetic covalent organic frameworks for enhanced phosphopeptide enrichment He, Y.; Zhang, S. et al. Talanta 2021, 235, 122789 https://doi.org/10.1016/j.talanta.2021.122789
Thiol and Disulfide Containing Vancomycin Derivatives Against Bacterial Resistance and Biofilm Formation Shchelik, I.S.; Gademann, K. preprint; Microbiology 2021 https://doi.org/10.1101/2021.08.23.457343
Automated Chiral Analysis of Amino Acids Based on Chiral Derivatization and Trapped Ion Mobility–Mass Spectrometry Will, J. M.; Behrens, A. et al. Anal. Chem. 2020, acs.analchem.0c03481 https://doi.org/10.1021/acs.analchem.0c03481
Evaluation of Trapped Ion Mobility Spectrometry Source Conditions Using Benzylammonium Thermometer Ions Naylor, C.N.; Ridgeway, M.E. et al. J. Am. Soc. Mass Spectrom. 2021, 31, 1593–1602 https://doi.org/10.1021/jasms.0c00151
Fast Online Separation and Identification of Electrochemically Generated Isomeric Oxidation Products by Trapped Ion Mobility-Mass Spectrometry Fangmeyer, J.; Scheeren, S. et al. Anal. Chem. 2019, acs.analchem.9b04337 https://doi.org/10.1021/acs.analchem.9b04337
Solvent Adducts in Ion Mobility Spectrometry: Toward an Alternative Reaction Probe for Thermometer Ions Morsa, D.; Hanozin, E. et al. J. Am. Soc. Mass Spectrom. 2020, jasms.0c00108 https://doi.org/10.1021/jasms.0c00108
Integration of •SO4−-based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II Yu, X.; Sun, J. et al. Water Research 2020, 174, 115622 https://doi.org/10.1016/j.watres.2020.115622
Trends in trapped ion mobility – Mass spectrometry instrumentation Ridgeway, M.E.; Bleiholder, C. et al. TrAC Trends in Analytical Chemistry 2019, 116, 324–331 https://doi.org/10.1016/j.trac.2019.03.030
Integration of •SO4−-Based AOP Mediated by Reusable Iron Particles and a Sulfidogenic Process to Degrade and Detoxify Orange II Yu, X.; Sun, J. et al. Water Research 2020, 174, 115622 https://doi.org/10.1016/j.watres.2020.115622
Metal–Peptide Rings Form Highly Entangled Topologically Inequivalent Frameworks with the Same Ring- and Crossing-Numbers Sawada, T.; Saito, A. et al. Nat Commun 2019, 10 (1), 921 https://doi.org/10.1038/s41467-019-08879-7
Comparing Empty and Filled Fullerene Cages with High-Resolution Trapped Ion Mobility Spectrometry Hennrich, F.; Schneider, E. et al. J. Am. Soc. Mass Spectrom. 2019, 30 (10), 1973–1980 https://doi.org/10.1007/s13361-019-02250-2
Nanogymnastics: Visualization of Intercluster Reactions by High-Resolution Trapped Ion Mobility Mass Spectrometry Baksi, A.; Schneider, E. K. et al. J. Phys. Chem. C 2019, 123 (46), 28477–28485 https://doi.org/10.1021/acs.jpcc.9b08686
Imidazole-Modified G-Quadruplex DNA as Metal-Triggered Peroxidase Punt, P. M.; Clever, G. Chem. Sci. 2019, 10 (8), 2513–2518 https://doi.org/10.1039/C8SC05020A
Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species Jeanne Dit Fouque, K.; Ramirez, C. E. et al. Anal. Chem. 2019, 91 (8), 5021–5027 https://doi.org/10.1021/acs.analchem.8b04979
Visible-Light-Driven [2 + 2] Photocycloadditions between Benzophenone and C═C Bonds in Unsaturated Lipids Li, H.-F.; Cao, W. et al. J. Am. Chem. Soc. 2020, 142 (7), 3499–3505 https://doi.org/10.1021/jacs.9b12120
Helicenes Fused with Hexafluorocyclopentene (HFCP): Synthesis, Structure, and Properties: Helicenes Fused with Hexafluorocyclopentene (HFCP): Synthesis, Structure, and Properties Agou, T.; Kohara, M. et al. Eur. J. Org. Chem. 2020, 2020 (12), 1871–1880 https://doi.org/10.1002/ejoc.202000152
Visible-Transparent Aromatic Polymers Obtained by the Polycondensation of a Bis(Trifluorovinyl)Benzene with Bisphenols Agou, T.; Yoshinari, K. et al. Macromolecules 2020, 53 (8), 2942–2949 https://doi.org/10.1021/acs.macromol.0c00157
Tacticity, Molecular Weight, and Temporal Control by Lanthanide Triflate-Catalyzed Stereoselective Radical Polymerization of Acrylamides with an Organotellurium Chain Transfer Agent Imamura, Y.; Fujita, T. et al. Polym. Chem. 2020, 11 (44), 7042–7049 https://doi.org/10.1039/D0PY01280G
Flavonoids and Other Phenolics in Herbs Commonly Used in Norwegian Commercial Kitchens Slimestad, R.; Fossen, T. et al. Food Chemistry 2020, 309, 125678 https://doi.org/10.1016/j.foodchem.2019.125678
“Conformation Pinning” by Anion Attachment Enabling Separation of Isomeric Steroid Monomers by Ion Mobility Spectrometry Cole, R. B.; Bayat, P. et al. J Mass Spectrom 2020, 55 (12) https://doi.org/10.1002/jms.4657
Synthesis of Trialkylamines with Extreme Steric Hindrance and Their Decay by a Hofmann-like Elimination Reaction Banert, K.; Hagedorn, M. et al. J. Org. Chem. 2020, 85 (21), 13630–13643 https://doi.org/10.1021/acs.joc.0c01790
Oxidative Formation of Disulfide Bonds by a Chemiluminescent 1,2-Dioxetane under Mild Conditions Sauer, C. S.; Köckenberger, J. et al. J. Org. Chem. 2020, 85 (14), 9331–9338 https://doi.org/10.1021/acs.joc.0c00569
Linear Size Contraction of Ligand Protected Ag 29 Clusters by Substituting Ag with Cu Baksi, A.; Schneider, E. K. et al. ACS Nano 2020, 14 (11), 15064–15070 https://doi.org/10.1021/acsnano.0c05082
A Recyclable Photocatalytic Tea-Bag-like Device Model Based on Ultrathin Bi/C/BiOX (X = Cl, Br) Nanosheets Li, H.; Long, B. et al. Applied Surface Science 2020, 515, 145967 https://doi.org/10.1016/j.apsusc.2020.145967
Hydroperoxylated vs Dihydroxylated Lipids: Differentiation of Isomeric Cardiolipin Oxidation Products by Multidimensional Separation Techniques Helmer, P. O.; Behrens, A. et al. Anal. Chem. 2020, 92 (17), 12010–12016 https://doi.org/10.1021/acs.analchem.0c02605
Hydrophilic Spacer-Arm Containing Magnetic Nanoparticles for Immobilization of Proteinase K: Employment for Speciation of Proteins for Mass Spectrometry-Based Analysis Bayramoglu, G.; Kayili, H. M. et al. Talanta 2020, 206, 120218 https://doi.org/10.1016/j.talanta.2019.120218
Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry Morsa, D.; Hanozin, E. et al. Anal. Chem. 2020, 92 (6), 4573–4582 https://doi.org/10.1021/acs.analchem.9b05850
LC-Trapped Ion Mobility Spectrometry-TOF MS Differentiation of 2- and 3-Disulfide-Bonded Isomers of the μ-Conotoxin PIIIA Schmitz, T.; Pengelley, S. et al. Anal. Chem. 2020, 92 (16), 10920–10924 https://doi.org/10.1021/acs.analchem.0c02151

 

For Research Use Only. Not for use in clinical diagnostic procedures.