在本讲座的 4 个部分中,您将深入了解电池行业的各种技术。从研究溶质和电极、跟踪电池单元行为到储能材料的现场研究,布鲁克的应用科学家们将与您分享丰富的研究知识。
第一讲:为未来提供动力: 电池研究的分析方法
了解电池的化学成分对于提高电池的性能、寿命和安全性至关重要。本次会议将重点介绍分析技术在电池研发中发挥的作用。通过深入了解储能材料的化学、结构和电化学特性,这些方法使研究人员能够推动创新并解决复杂的挑战。我们将概述核磁共振、固体核磁共振和 X 射线衍射等关键分析方法,并讨论它们在推动电池技术发展方面的应用。
第二讲:用于探测电极和电解质中反应的光谱电化学装置
电化学与振动光谱相结合,通过独特的红外和拉曼特征,为电化学反应和电池研究提供了强大的洞察力。会议将涵盖配件、设置优化以及金属有机复合物的电氧化和锂电池界面绘图等应用。
第三讲:用于电池研究的固体NMR技术的进步与挑战
固体核磁共振 (NMR) 是一种用于研究电池材料结构变化的表征技术。先进的核磁共振方法可用于跟踪和检查充电/放电期间或之后的离子交换/跨界面扩散、电解质分解、树枝晶形成、电极存储行为等,从而了解电化学过程并改善电池性能。
第四讲:电荷与结构: 通过 X 射线衍射了解电池
X 射线衍射 (XRD) 是阐明电池材料原子尺度结构特性的有力工具。现代 XRD 技术可用于了解循环和合成方法对电极稳定性和效率的影响,最终指导下一代储能解决方案的开发。
研讨会亮点:
举办时间:
2024 年 11 月 19 日
Session 1: 11:00 a.m.
Powering the Future: Analytical Methods in Battery Research
Chemical understanding of batteries is essential for enhancing their performance, longevity, and safety. This session will highlight the role that analytical techniques play in battery research and development. By offering deep insights into the chemical, structural, and electrochemical properties of energy storage materials, these methods enable researchers to drive innovation and solve complex challenges. We'll provide an overview of key analytical approaches, including spectroscopy, solid-state NMR, and X-ray diffraction, and discuss their applications in advancing battery technology.
Session 2: 11:25 a.m.
Spectroelectrochemical Setup for Probing Reactions on Electrodes and in Electrolytes
Electrochemistry combined with vibrational spectroscopy provides powerful insights into electrochemical reactions and battery research through unique infrared and Raman signatures. The session will cover accessories, setup optimization, and applications like electro-oxidation of metal-organic complexes and lithium battery interface mapping.
Session 3: 11:50 a.m.
Advancements and Challenges of Solid-State NMR Technology for Battery Research
Solid-State Nuclear magnetic resonance (NMR) is a characterization technique applied to investigate the structural changes of/in battery materials. Advanced NMR approaches can be used to track and examine ion-exchange/diffusion across interfaces, electrolyte decomposition, dendrite formation, storage behavior of an electrode etc. during or following charging/discharging in order to understand electrochemical processes and improve battery properties.
Session 4: 12:15 p.m.
Charge and Structure: Understanding Batteries Through X-Ray Diffraction
X-ray diffraction (XRD) serves as a powerful tool for elucidating the structural properties of battery materials at the atomic scale. Modern XRD techniques can be used to understand the effects of cycling and synthesis methods on electrode stability and efficiency, ultimately guiding the development of next-generation energy storage solutions.
Key Learning Objectives: