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Workflow of an ion-mobility—mass spectrometry proteomics experiment
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Challenges with peptide fragmentation and collision energy
selection
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> Mass spectrometers often fail to select the optimal collision energy.
> Asignificant portion of peptides fail to reach maximum fragmentation, reducing identification sensitivity.
> Collision energy selection is most commonly based on the peptide mass-to-charge ratio, but most mass

spectrometers do not consider other peptide properties that are thought to affect to optimal collision energy
required.



Objective 1: Create an artificial neural network to predict peptide
fragmentation level from collision energy and other peptide features.
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Peptide features:
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- Mass-to-charge ratio (m/z)
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A sequential neural network with 3 hidden layers of 50 nodes was constructed.
Experimental proteomics data gathered with a Bruker timsTOF Pro from 35 HEK293 cell lysates were used as

a training set. The amount of collision energy applied was limited to a narrow range in each experiment, giving
an uniformly distributed collision energy values spanning from 20~100 eV over the training data.



A\

Neural network performance

Observed vs predicted fragmentation - scatter plot illustration
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Model prediction
> Modeled capture the general trend that confirms and exemplifies the positive correlation between m/z and
collision energy required for optimal fragmentation.

Note only 2 of the 4 features are displayed here as the independent variables.

Red-colored points show peptides with fragmentation prediction error > 50% (2.4% of total peptides on the
testing set).

The predicted and observed fragmentation levels have a Pearson’s correlation coefficient of 0.80, and a
mean-squared-error of 0.0388 (on a output scale of 0~1) on the testing set.



Objective 2: Using the trained neural network, determine the optimal
level of collision energy that will result in the highest fragmentation
for a given peptide in real-time.
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> The optimal collision energy selection process could be executed under 5 ms on average, demonstrating
capacity to be run in real-time during mass spectrometry.
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The collision energy used and fragmentation achieved in the testing set is shown
in red, while the neural network prediction for varying collision energy levels of
0~100 eV are plotted in the Viridis color scale. The majority of the red dots fall
close to the predicted model.
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Conclusion

> The artificial neural network we have constructed is able to predict relative
peptide fragmentation level from the collision energy applied and other
peptide features.

> Prediction accuracy of peptide ion fragmentation reaches a Pearson’s
correlation coefficient of 0.80

> Selection of optimal collision energy using the model can be executed under 5
ms, demonstrating capacity for real-time application on instruments in future
developments.
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