Teresa Carlomagno

揭开疾病的神秘面纱:利用核磁共振在分子水平上了解新冠肺炎病毒

由于新冠肺炎在未来几年内仍将是一个全球性的健康难题,了解SARS-CoV-2病毒的分子机制并制定新的防控战略仍然是研究议程上的重点。作为Covid-19核磁共振联盟的成员,Teresa Carlomagno教授正处于这项工作的最前沿。阅读全文,了解为什么NMR的能力可以在生物化学家的工具包中发挥特殊作用吧。

“我只是觉得NMR看起来很酷!”早在1992年,Carlomagno教授不假思索地选择了NMR作为硕士研究方向。但她对这种技术工作方式的迷恋,是许多将NMR作为毕生事业的人身上都可以看到。她说:“我一开始对核磁共振物理学非常感兴趣,事实上,在我职业生涯的早期,我只是在开发新的实验方法。”

近30年过去了,她对核磁共振的热情并没有减退。事实上,反而比任何时候都更强大:“在我的职业生涯中,我已经使用了许多方法来探测分子结构和相互作用,如电子顺磁共振、X射线晶体学、生化检测、质谱和小角中子散射等等,”她说:“但是,兜兜转转,我又回到核磁共振,因为它的多功能性和对分子层面相互作用的洞察力。我看NMR真的是我的初恋吧!”

NMR在生物分子研究中的应用

Carlomagno教授在汉诺威莱布尼茨大学工作,她和她的团队一共包含约15名博士生、博士后和技术人员,他们专注于识别新的目标和配体,以解决从癌症到病毒感染的各种疾病。

她所在的生物分子药物研究中心,也被称为BMWZ,是相对较新成立的机构。她解释道:“BMWZ始于2011年,当时一群化学家想研究天然产物作为药物的潜力。然后在2015年又扩充了基于核磁共振的结构生物学项目,我就是这样参与进来的。”那时,Carlomagno教授的关注点已经超越了“纯”NMR方法。她说:“随着时间的推移,我对生物学更加感兴趣,当我加入BMWZ时,我的研究项目已经转变为使用NMR来阐明生物分子之间的相互作用。”

对核磁共振的生物分子应用的兴趣已经证明了她在BMWZ工作的价值,教授表示:“我们将核磁共振应用于溶液中非常大的分子组合,主要是蛋白质、RNA,以及它们之间的复合体。核磁共振的优点是多方面的:你可以调整实验以提出具体的问题;也可以'放大'到分子的特定部分;你可以研究动力学以及结构。所有这些都是核磁共振所独有的。”

阐明SARS-CoV-2病毒的工作机制

作为Covid-19核磁共振联盟的一员,Carlomagno教授的研究经验的有效性在新冠肺炎大流行期间得到了认证。她说:“我认识联盟负责人Harald Schwalbe教授很久了。事实上,我们在1990年代同时在Christian Griesinger教授的小组工作。因此,当我听说这个联盟时,我非常乐意参与其中。”

在联盟中,Carlomagno教授专注于研究SARS-CoV-2(Covid-19的病原体)如何规避宿主的免疫反应,使其能够劫持宿主的细胞机器来复制更多的自体病毒。教授解释称:“有一种理论认为,病毒的一种蛋白质与它自己的信使RNA相互作用,防止它降解,使它比宿主的mRNA更具优势。我们正试图了解这个过程是如何工作的,特别是蛋白质和mRNA是如何相互作用的,无论是在溶液中还是在固体状态下。”

关于RNA-蛋白质复合物的固体核磁共振分析的这一点是很贴切的,因为这是Carlomagno教授特别擅长的一个领域:”我们在研究大型生物分子的过程中使用这种方法已经有一段时间了,因为它允许我们在分子难以进入溶液或被嵌入到膜中时获得核磁共振谱。因此,对于这类工作来说,固体核磁是我们技术工具箱的有力补充。"

从无序中提取见解

There is also another aspect of biomolecular science that Prof. Carlomagno addresses with NMR. She explains that in recent decades, biomolecules lacking a clear tertiary structure have become a topic of much interest: “These molecules look like spaghetti, they move around like spaghetti, but somehow they still manage to have important interactions.”

“These disordered structures are relevant to our work on SARS-CoV-2 because of a protein called Nsp1, which plays a key role in the infection ability of the virus,” she says. “The interesting thing about this protein is that part of it is well-folded, whereas another part is very disordered. In proteins with this topology, these two parts seem to have separate roles, with the molecule as a whole using a mix of enthalpic and entropic contributions to achieve binding. Part of our work has been to study how proteins can do this and yet remain so selective.”

And this is where NMR comes up trumps again. “Out of all the techniques used in structural biology, only NMR allows you to study disordered molecules such as this. It really is unmatched in its ability to examine molecules that adopt different shapes in solution, and I’m very keen to use it to find out more about the unusual properties of Nsp1.”

合作与竞争

And what might ultimately come of this research? Prof. Carlomagno is cautiously optimistic: “Projects and plans always evolve as new results emerge – so it’s unwise to make long-term plans,” she says. “We definitely still have a lot of work to do in this project, but, once we’ve got a clear picture of the protein–mRNA interactions that are most important, the ultimate goal will be designing a drug to interfere with Covid-19. In the future, it’s going to be essential to have multiple strategies to deal with it, especially for those unable or unwilling to receive vaccination.”

And even though the Covid-19 NMR consortium has been running for less than two years, Prof. Carlomagno has seen first-hand the benefits of doing research this way: “For me, the great thing about the consortium has been that it overcomes the negative consequences of the competitiveness often present in science.”

“This has made a refreshing and very worthwhile change – we’re using the same techniques to study the same things, but as part of a team. So, with expert guidance from Prof. Schwalbe, we’ve been able to get through a vast amount of work more efficiently, leading to accelerated outcomes. For example, we’ve been able to publish results that simply wouldn’t have appeared if our groups had been working independently.”

Could this be a model for the rest of science? Prof. Carlomagno says it would need some careful thought. “Competition for funding and the rush to publication hinders easy collaboration among scientists within the same field more than ever these days; at the same time, a certain amount of friendly rivalry is good to keep you motivated,” she says. “But in certain circumstances, where the goal is well-defined and would benefit from a coordinated effort amongst a small group, then yes, I think that collaboration amongst scientists with the same expertise should be exploited more – provided the funding can be easily arranged, of course.”

NMR仪器的重要性

最后,Carlomagno教授极力强调仪器设备在促成新发现方面的重要性:“虽然科学的焦点往往是我们的研究成果,但我认为我们决不能忘记仪器制造商的作用。正是他们不断努力开发具有新功能的新工具,支撑着我们解决日益复杂和具有挑战性的问题的能力。

“因此,我认为,获得最新的设备不仅对产生新的科研结果至关重要,对拓宽科学的边界和取得重大进展也至关重要。”

在撰写本文时,Teresa Carlomagno教授在德国汉诺威莱布尼兹大学生物分子药物研究中心(Biomolekulares Wirkstoffzentrum, BMWZ)担任结构生物学和结构化学教授。在此之前,她曾在法兰克福大学、拉霍亚的Scripps研究所、哥廷根的马克斯-普朗克生物物理化学研究所和海德堡的EMBL任职,研究核磁共振方法和生物分子科学的各个方面。

从2021年10月起,Carlomagno教授被任命为英国伯明翰大学生物分子核磁共振(NMR)国家设施的负责人。

关于布鲁克

布鲁克致力于支持科学家取得突破性的科学发现并开发新的应用以提升人类的生活质量。布鲁克的高性能科技仪器以及高价值分析和诊断解决方案,让科学家能够在分子、细胞和微观层面上探索生命和材料的奥秘。通过和用户的紧密合作,布鲁克致力于科技创新、提升生产力并实现用户的成功。我们的业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。