Quality assessment of biologics: higher order structure analysis using NMR

John P. Marino

Leader, Biomolecular Structure & Function Group Institute for Bioscience and Biotechnology Research (IBBR)

National Institute of Standards and Technology & University of Maryland john.marino@nist.gov

European Pharmaceutical Review Webinar September 27, 2018

Top 10 Drugs by Sales, 2017

Product	2017 Sales	% ∆ v. 2016	Used For	Туре
Humira (Adalimumab)	\$18,427,000,000	14.6%	Anti-inflammatory	mAb
Rituxan (Rituximab)	\$9,238,000,000	2.0%	Anti-Cancer	mAb
Revlimid (Lenalidomide)	\$8,187,000,000	17.4%	Anti-Cancer	Small molecule
Enbrel (Etanercept)	\$7,885,000,000	(11.1)%	Autoimmune diseases	Protein/IgG
Herceptin (Trastuzumab)	\$7,441,000,000	3.4%	Anti-Cancer	mAb
Eliquis (Apixaban)	\$7,395,000,000	46.3%	Anticoagulant	Small moleule
Remicade (Infliximab)	\$7,152,000,000	(13.1%)	Autoimmune diseases	mAb
Avastin (Bevacizumab)	\$7,096,000,000	(1.4)%	Anti-Cancer	mAb
Xarelto (Rivaroxaban)	\$6,589,000,000	11.3%	Anticoagulant	Small molecule
Eylea (aflibercept)	\$6,034,000,000	9.4%	Macular degeneration	Fusion protein

Statistics from Genengnews.com, Mar 12, 2018

Motivation for NIST's Measurement and Standards Program in Biomanufacturing

Biopharmaceuticals represent a significant and growing part of the health care economy

Patent Expiry of Innovator Products is leading to a rapid growth in biosimilars

The complexity of biopharmaceuticals is driving development of new analytical tools and standards for confident characterization and comparability assessment

Challenge to manufacture or make a copy (biosimilar) of a biopharmaceutical that is not adequately defined by measurement

Small Molecule Drugs MW < 500 g/mol Synthetic/homogeneous

Monoclonal antibody

- Large, complex (~150,000 kDa)
- Heterogeneous product

Application of 2D NMR Methods to Measure the Quality Attribute of 'Higher Order Structure' (HOS) of a Biopharmaceutical

HOS of Biotherapeutics: Primary \rightarrow Quaternary Structure

Harder to Measure

Current Methods for HOS Assessment of Biotherapeutics

Number of methods used/proposed for HOS measurement:

- Chromatography: SEC/IEC/HIC
- CD, FT-IR, Raman
- HDX-MS
- Fluorescence
- Calorimetry (e.g. DSC)
- AUC
- Light Scattering, DLS
- 1D NMR (e.g., PROFILE)

2D NMR: Advantages

- Atomistic Assignment
- Measurement/Instrument reproducibility
- Direct assessment 'as provided materials'

2D NMR: Challenges

- Sensitivity
- Resolution (Spectral Complexity)

NMR can provide highly detailed fingerprint-like information about the structure (dynamics and environment) of a biopharmaceutical an atomic resolution.

NMR can find applications in:

- Biopharmaceutical development
- Formulation studies
- Biomanufacturing comparability
- Quality Control
- Biosimilarity

Applied in different modes to solve the specific measurement need:

• from 'pass/fail' 1D screening to detailed 2D amino acid level analysis.

NMR Spectroscopy provides High-Resolution and Potential for Atomistic Assignment of Signals

¹H_N-¹⁵N HSQC – 'Gold Standard' for assessing protein 'foldedness'

¹H_N-¹⁵N backbone amide correlation for each amino acid in a protein

Sequence specific assignment of resonances with heteronuclear correlation methods

2D ¹H-¹⁵N NMR 'Fingerprints' of the HOS of Protein Biologics

Y. Aubin, G. Gingras, and S. Sauvé Anal. Chem., 2008, 80 (7), pp 2623–2627

2D NMR of Formulated Biopharmaceuticals

NMR is robust and applicable to formulated products

Isotope Labeling (¹⁵N-labeling) while possible is **NOT** an option for **PRACTICAL** application

Data collected using isotopes at NATURAL ABUNDANCE

 $^{15}N = 0.37 \%$ $^{13}C = 1.1\%$ Example: Formulated NUFIL Safe[™]

How Can We Correlate 2D NMR Spectral Fingerprints?

Data Analysis:

- Visual Inspection
- Combined Chemical Shift Deviation (CCSD)
- Point-by-point comparison
 Linear Correlation plots
- If many spectra, a full multivariate analysis (e.g., PCA) can be done

Challenges in Applying 2D ¹H-¹⁵N NMR 'Fingerprinting' to mAbs

- Line Width
- Sensitivity
- Spectral Overlap

2D ¹H-¹³C NMR (Methyl): An Approach for mAb HOS Fingerprints

Side Chain Methyl Groups

Ala, Ile, Leu, Met, Thr, Val

- ¹³C at natural abundance is more sensitive than ¹⁵N natural abundance: ¹⁵N = 0.37 % versus ¹³C = 1.11%
- Methyl groups have intrinsically favorable relaxation
- Non–uniform sampling (NUS) of data can cut experimental time by a further 50 % for 2D data collection

NISTmAb Reference Material: A Platform for Measurement Innovation and Benchmarking

NISTmAb contact: john.schiel@nist.gov

NISTmAb: 2D Methyl Fingerprinting at Natural Isotopic Abundance

Using a cutoff of peak S/N \geq 10:1,~ 210 peaks of the 221 expected signals (95%) can be observed.

Arbogast, L.W.; Marino, J.P.; Brinson, R.G. Analytical Chemistry, 2015, 87, 3556-3561.

Fingerprinting the Fab/Fc Fragments of a mAb

- In language of mass spectrometry, a "middle down approach"
- Use the protease Papain to cleave at the hinge region

NISTmAb, Fab and Fc Methyl Fingerprints

Arbogast, Brinson, Formolo, Hoopes, Marino. Pharm Res. 2016, 33, 462-475.

Rapid Data Acquisition through Non-Uniform Sampling (NUS)

SOFAST/NUS Spectra in < 1 hour (9x faster than standard experiment)

Wagner Lab (Harvard) NUS Protocols

Aliphatic Excipient Abound and Can Interfere with the NMR HOS Fingerprint

Excipient	Polysorbate-80	Polysorbate-20	Poloxamer-188	Mannitol	Sorbitol	Sucrose	Trehalose	Dextrose	Dextran-40	Arginine	Glycine	Methionine	Ascorbic Acid	Acetate	Tris	Succinate	Histidine
All (%)	57	19	3	8	3	35	14	3	3	8	8	3	3	19	3	3	35
Lyo (%)	45	36	0	9	9	82	18	9	9	0	0	0	0	0	0	9	27
Liquid (%)	62	12	4	8	8	15	12	0	0	12	12	4	4	27	4	9	38

Common Aliphatic mAb Excipients

Kang, J; Lin, X; Penera, J. Bioproc. Intl. 2016.

Examples of Aliphatic Excipient Interference with ¹H-¹³C Methyl Spectra

Optimized Filters for Excipient Reduction and Removal (SIERRA): Case Study with 50 mM L-methionine

Experiment*	S/N	S/N Ratio	S/N-sel Ratio
gsHSQC	22.938	1	N/A
gsHSQC-sel	21.260	0.927	1
SIERRA-gsHSQC CP off	20.232	0.882	0.951
SIERRA-gsHSQC CP on	19.390	0.845	0.911
PFGSTE-gsHSQC 5 ms	5.079	0.221	N/A
PFGSTE-gsHSQC 30 ms	3.765	0.164	N/A

Selective pulse techniques combined with SMILE-based signal subtraction can mitigate interference from commonly employed aliphatic excipients with minimal sensitivity loss

Application of 2D NMR Methods to

Detect, Quantify and Assign HOS

Variation

Simulating Structural Variation in mAbs: Glycan Remodeling

Structure \rightarrow Function

Asparagine(N)-linked carbohydrate chain (glycan) on Fc is required for cell surface Fc γ receptors (FcγRs) interactions

Crystal structure of NISTmAb Fc with G0F/G1F glycans 2.1 A resolution (PDB 5VGP)

Glycan Remodeling Creates Defined Structural Changes in a mAb

Glycan Remodeling and Resulting Methyl Fingerprints of NISTmAb

Comparison of NISTmAb with ExoGal-NISTmAb

PCA Can Readily Differentiate Minor Structural Variation arising from Glycan Remodeling

Probing the Lower Limit for Detecting Structural Variation in a mAb Biopharmaceutical

PCA Scatterplot from 26 ¹H-¹³C-methyl spectra of blended ExoGal-/Native-NISTmAb

Grey lines correspond to the 95% confidence interval of the spread for each cluster. Dashed red lines on the 15%, 7.5% and native clusters correspond to the 2σ interval

Application of Multivariant Analysis (PCA) Directly to the NMR Data without Spectral Processing

- PCA can applied to spectra or interferograms, conventional or NUS without the need for apodization, special reconstruction, baseline correction, or peak analysis.
- Since NMR fingerprinting can potentially be performed without the need to identify peaks, it might be possible to <u>develop even more</u> <u>efficient measurement and processing strategies</u> which do not produce spectra that can be analyzed visually, but nevertheless encode all the structural information of interest.

PCA Discrimination of Glycan Variants may be possible with NUS Sampling < 10%

NISTmAb NMR Interlaboratory Study

- To establish a harmonized community standard for the measurement of the higher order structure (HOS) by 2D-NMR
- To provide assurance for industrial and regulatory agencies that 2D-NMR can be applied to biopharmaceuticals with high precision and reproducibility
- To develop and benchmark chemometric tools to aid in the translation of the 2D-NMR method into the biopharmaceutical development and manufacturing workflow.

RG Brinson, et. al. (48 co-authors ...) Enabling adoption of 2D-NMR for the higher order structure assessment of mAb therapeutics. Submitted to mAbs **2018**.

NISTmAb NMR Interlaboratory Study

Moving the 2D-NMR method from an emerging technology to a harmonized, routine measurement that can be generally applied with confidence to high precision assessments of biopharmaceutical HOS

Average ¹H-¹³C Methyl CCSD of SSS Spectra: Evaluating the Precision of the 2D-NMR Method

Summary

2D NMR Fingerprinting of Biopharmaceutical (including mAbs) is precise, practical and robust

- Natural Abundance (label-free technique)
- Applicable at 600 MHz, the 'workhorse' NMR spectrometer of most labs
- ¹³C Methyl maps can take < 1 hr using NUS/SOFAST
- Excipient Signals can be filtered/suppressed
- Interferograms can be analyzed directly, eliminating need for NUS reconstruction

Data Analysis (Beyond visual inspection by the expert operator)

- Combined Chemical Shift Deviation
- Point-by-point comparison
- Multivariate analysis (PCA) other Chemometric Approaches

Multivariate analysis of 2D spectra is sensitive to subtle difference in HOS

- Methods can be automated without interactive analysis of spectral features
- Potential for application of machine learning

Acknowledgements

Support: NIST Biomanufacturing Initiative; NMR instrumentation supported by NIST, the Keck Foundation and the NIH.

Chris McCullough (Medi-NIST PD) Wade Elliot (Amgen-NIST PD)

John Schiel (NIST-IBBR) John Giddens (NIST-IBBR) Trina Formolo (NIST-IBBR) Katharina Yandrofski (NIST-IBBR)

Houman Ghasriani (Health-Canada) Geneviève Gingras (Health-Canada)

Wagner Group (Harvard)

