dia-PASEF Proteomic Analysis of HNSCC Tumor and Stroma Enriched Sections from FFPE **Samples Prepared with Laser Capture Microdissection**

Aswini Panigrahi¹, Allison L. Hunt², Diego Assis³, Radoslav Goldman¹, Thomas P. Conrads² and <u>Matthew Willetts³</u> ¹Georgetown University, Washington DC, DC, ²Women's Health Integrated Research Center, Annandale, VA, ³Bruker Scientific, Billerica, MA

Introduction

Head and neck squamous cell carcinoma (HNSCC), an epithelial cancer is the most common type of head and neck cancer. HNSCC cells first invade the basement membrane of the native epithelium, and in >50% cases proceed to lymph node metastasis, which is associated with poor survival. Overall, the response to available treatments has been moderate. The genomic and transcriptomic landscape of HNSCC (The Cancer Genome Atlas) has been defined, but pinpointing the genetic aberrations linked to tumor phenotypes remains elusive. Here we performed deep proteome analysis of tumor and matched normal adjacent tissues (NATs) (Clinical Proteomic Tumor Analysis Consortium). The proteomic comparison of the cancer cells and its neighboring microenvironment may help identify novel targets for early detection, and intervention of HNSCC.

Methods

In this study, laser capture microdissection (LCM) was used to collect tumor and stroma enriched sections from formalin-fixed paraffin-embedded (FFPE) tissues. The samples were processed and digested with trypsin. dia-PASEF LC-MS/MS analysis was performed using the timsTOF HT mass spectrometer connected to a nanoElute 2 LC system via a CaptiveSpray 2 source. Each sample was analyzed in triplicate using a 32-minute gradient (500 ng peptide per injection, 40 min total run time on a 25 cm Aurora Ultimate 25cm x 75µm C18 column), resulting in a throughput of 24 samples per day. The dia-PASEF window scheme was calculated using the py_diAID tool developed by the Mann Lab (ref 1). Data analysis was performed using the directDIA+ workflow (Spectronaut 18 software) and the Uniprot-Human-reviewed database (20,383 protein entries).

Ref 1. https://github.com/MannLabs/pydiaid

Results

Replicate injections of tumor and stroma sample showed excellent chromatographic reproducibility (Figure 1) with CVs under 10% at the protein level.

- >8800 protein groups were identified in tumor tissue from over 106,000 peptides. Almost 7800 of the identified proteins were identified with at least two peptides.
- >8700 proteins were identified from the stroma from over 103,000 peptides

Fig. 2 More than 8800 proteins groups were identified in tumor samples and >8700 in stroma samples. >8600 proteins and >113,000 precursors were identified across all samples.

GO:00310

GO:00860 GO:00484 GO:00320 GO:00302 GO:00860 GO:00974

> GO:00300 GO:00513 GO:00083 GO:00192 GO:00314 GO:00052 GO:00428 GO:00082 GO:00055

Heparin binding prot

Red ↑ Stroma Blue ↑ Tumor

Fig. 3. All stroma samples clustered together and are clearly separated from the tumor group by hierarchical analysis.

GO Enrichment: Function

ID)14	term description Troponin T binding	genes mapped 3	enrichment score 7.57764	direction stroma	FDR 0.00098	
	Cell adhesive protein binding involved in bundle of					
)83	His cell-Purkinje myocyte communication	5	5.4257	tumor	0.004	
107	Platelet-derived growth factor binding	9	5.11285	stroma	4.44E-05	
)36	Myosin heavy chain binding	7	5.06376	stroma	0.00086	
280	Structural constituent of skin epidermis	24	4.88931	tumor	1.39E-06	
	Protein binding involved in heterotypic cell-cell					
080	adhesion	7	4.79961	tumor	0.0022	
93	Structural molecule activity conferring elasticity	6	4.77105	stroma	0.0045	
	Extracellular matrix structural constituent conferring					
)21	compression resistance	8	4.72388	both ends	0.00019	
371	Muscle alpha-actinin binding	10	4.52576	stroma	0.0002	
307	Structural constituent of muscle	37	4.49102	stroma	1.84E-07	
215	Intermediate filament binding	10	4.47859	both ends	5.25E-05	
132	Titin binding	8	4.2018	stroma	0.0032	
	Extracellular matrix structural constituent conferring					
)20	tensile strength	19	3.97991	stroma	4.32E-06	
393	Alpha-actinin binding	14	3.97488	stroma	8.79E-05	
201	Extracellular matrix structural constituent	74	3.72914	stroma	1.61E-22	
305	Actinin binding	18	3.42854	stroma	0.00016	
518	Collagen binding	41	3.41049	stroma	5.78E-08	
201	Heparin binding	58	2.98938	stroma	8.20E-09	
539	Glycosaminoglycan binding	81	2.90727	stroma	9.70E-13	
394	Proteoglycan binding	20	2.77001	stroma	0.0022	
968	Fibronectin binding	20	2.41146	stroma	0.0093	
)21	Ribonucleoprotein complex binding	24	2.23986	tumor	4.53E-05	
306	Calcium-dependent protein binding	29	2.18727	both ends	0.0031	
386	Helicase activity	31	2.06666	tumor	0.00016	
101	Cultur company and binding	00	0 00760	atra ma a		

Fig. 5. GO functional and pathway enrichment analysis

Fig. 6. Protein-protein interaction analysis using the STRING database (https://string-db.org/).

Summary

- (stroma and tumor).
- the stromal region

Conclusion

- depth of coverage.
- scalable format.

Diego Assis and Matthew Willetts are current employees of Bruker Daltonics

> 8,800 protein groups and >100,000 peptides were identified in 32 minutes gradient time on the timsTOF HT.

More than 8,600 protein groups were identified in all conditions

GO functional and pathway enrichment analysis of these proteins identified several functional groups relevant to stromal and tumor regions, e.g., higher abundance of growth factor binding, collagen binding, heparin binding proteins, and ECM structural constituents in

dia-PASEF acquisition on the timsTOF HT allows high throughput analysis of FFPE tissue samples with high

The methodology allows for comparative deep proteome analysis of tumor and its adjacent microenvironment in a

Technology