T-ReXing Synthetic Cannabinoid Receptor Agonists – Unveiling Metabolites Suitable for Urine Screening via UHPLC-timsTOF-MS and MetaboScape

Annette Zschiesche¹, Birgit Schneider², Ilona Nordhorn², Carsten Baessmann², Jürgen Kempf¹, Laura M. Huppertz¹ ¹Institute of Forensic Medicine, Medical Center - University of Freiburg, Freiburg, Germany ²Bruker Daltonics GmbH & Co. KG, Bremen, Germany

Introduction

Since the late 2000s, the consumption of synthetic cannabinoid receptor agonists (SCRAs), a subset of new psychoactive substances (NPS), has constantly increased in Europe.¹ SCRAs show similar effects to phytocannabinoids like Δ 9-THC, but are substantially more potent and have unpredictable side effects, resulting in $_{25}$ serve intoxications and fatalities. Since the parent substances of SCRAs are rarely detectable in urine, the 20 elucidation of the **metabolism** has played a major role in **forensic toxicology** laboratories to keep ahead in this game of cat-and-mouse. The challenge is to implement biomarkers of SCRAs into mass spectral screening methods as quickly as possible following their first detection in drug seizures. As animal studies are timeconsuming and ethically questionable, the use of pooled human liver microsomes (**pHLMs**) is an efficient and cost -effective alternative to generate potential consumption markers for screening human urine samples.

This study used a Bruker timsTOF Pro 2, MetaboScape[®] and its embedded T-ReX[®] (Time aligned Region complete eXtraction) algorithm for the software -assisted non-targeted identification of potential metabolites of three highly prevalent SCRAs. In silico metabolite prediction tools (BioTransfromer 3.0² (**BT**) and GLORYx³ (**Gx**)) were used to predict unknown biomarkers since reference standards for novel SCRA metabolites are usually not commercially available. Hydrolyzed and non-hydrolyzed authentic forensic urine specimens found SCRA positive in routine analysis were re-acquired in positive PASEF (parallel <u>a</u>ccumulation <u>se</u>rial <u>fragmentation</u>) and bbCID (broadband collusion induced dissociation) mode to select the most abundant metabolites in vivo.

SCAN ME

Conclusions

1) Qualitative findings from pHLM incubations and urine samples were mostly in good agreement.

- 2) MetaboScape was able to detect and annotate high abundant as well as compound specific metabolites.
- 3) The tentatively identified biomarkers were added to the UHPLC-qTOF screening method and can be used for retrospective evaluation of bbCID data and future screening of authentic urine samples with a subsequently developed TASQ-method.
- 4) The described approach is tremendously faster and less laborious compared to manual data evaluation following known metabolism patterns.
- 5) Enzymatic hydrolysis/cleavage of glucuronides for urine screening for SCRAs is suggested for increased sensitivity. Despite the fact that this extra step requires more time for sample preparation.
- 6) For MDMB-4en-PINACA only 4 metabolites (highest no. in selectable settings) were predicted in silico with the integrated BioTransformer 3.0. Different algorithms of BT (n=3) and GLORYx (n=1) with different number of biotransformation steps (n) may explain the dissimilarities.
- 7) ADB-BUTINACA and MDMB-BUTINACA share at least the hydrolysis metabolite (AB4/MB6). For interpretation at least one other compound-specific and high abundant metabolite is required (e.g. monohydroxylation of the parent compound). The same applies for MDMB-4en-PINACA sharing the ester hydrolysis metabolite (MP6) and further metabolites with ADB-4en-PINACA⁴.
- 8) Adding a 4th dimension to SCRA metabolite screening allows for a higher confidence level in metabolite analysis.

Limitations

1) Some of the main biomarkers for consumption of the respective SCRA already published were not predicted *in silico* probably because of multiple, complex⁺ reaction steps involved e.g. ADB-BUTINACA ^{HO} dihydrodiole (ADB-BUTINACA +2O+2H) and subsequent metabolites⁵

2)This issue could be solved by allowing more reaction steps or further manual reprocessing of *in silico* prediction results. Eventhough this would lead to an increase in annotated metabolites and consequenty in the time required for data 🔨 processing in MetaboScape. With the occurrence of SCRAs with uncommon substituents like trimethylpropylsilyl (3TMS)-sidechains this might become especially challenging.

Acknowledgements: The authors would like to thank Martin Scheu (Institute of Forensic Medicine Freiburg) for the pre-analysis of the urine samples for SCRAs used for the TargetScreener HR-method

Europe. European Drug Report **2023**, accessed: May 15, 2024 Wishart, D. S.; Tian, S.; Allen, D.; et al., T. O. BioTransformer 3.0—a Web Ser ver for Accurately Predicting Metabolic Transformation Products. Nucleic Acids Res. 2022, 50 (W1), W115–W123. https://doi.org/10.1093/nar/

3) de Bruyn Kops, C.; Šícho, M.; Mazzolari, A.; et al. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. Chem. Res. Toxicol. 2021, 34 (2), 286–299. https:// doi.org/10.1021/acs.chemrestox.0c00224.

4) Gu, K.; Qin, S.; Zhang, Y.; et al. Metabolic Profiles and Screening Tactics for MDMB-4en-PINACA in Human Urine and Serum Samples. J. Pharm. Bio*med. Anal.* **2022**, *220*, 114985. https://doi.org/10.1016/j.jpba.2022.114985. b) Kavanagh, P.; Pechnikov, A.; Nikolaev, I.; et al. Detection of ADB-BUTINACA Metabolites in Human Urine, Blood, Kidney and Liver. J. Anal. Toxicol. **2022**, *46* (6), 641–650. https://doi.org/10.1093/jat/bkab088.

Resu	ts

ADB-BUTINAC	A						In	vivo		
Formal Biotransformation	$m/z_{calc.}$ $[M+H]^+$	MetID	Δ <i>m/z</i> [ppm]	RT [min]	CCS _{meas.} [Å ²] [M+H] ⁺	ΔCCS [%]	Urines hy- drolyzed	Urines non- hydrolyzed	p	
Parent (C ₁₈ H ₂₇ N ₄ O ₂)	331.2129	AB0	0.28	10.05	185.5	1.2	X	X		
		<u>AB1</u>	<u>0.62</u>	<u>7.52</u>	<u>189.0</u>	<u>1.6</u>	\checkmark	\checkmark		
Monohydroxylation (+O)	<u>347.2078</u>	AB2	0.19	8.55	189.7	2.0				
		AB3	0.35	9.22	188.6	1.4	\checkmark			
Amide hydrolysis (+O -N -H)	332.1969	AB4	0.51	9.90	185.6	1.6	\checkmark	\checkmark		
Dibuduou detien (+ 20)	262 2027	AB5	-0.11	5.91	190.3	1.7	\checkmark	\checkmark		
Dinydroxylation (+20)	303.2027	AB6	-1.50	8.07	194.0	3.1	\checkmark	\checkmark		
Monohydroxylation +		AB7	-0.51	5.82	220.0	0.4	X	\checkmark		
Glucuronidation	523.2399	AB8	0.62	5.84	231.7	6.1	X	\checkmark		
(+0 +C6H8O6)		AB9	-0.82	6.10	233.1	6.7	X	\checkmark		
N-butanoic acid (+2O -2H)	361.1870	AB10	-0.34	7.06	186.1	-1.1	\checkmark	\checkmark		
Ketone formation* (+O -2H)	345.1919	A11	0.01	7.32	185.3	-0.0	\checkmark	\checkmark		
O NH O O NH O Presumably and	aldehyde formatio	n as common	for many SCR	As oxidized	from a N-4OH-butyl m	etabolite. Ho	owever, monohydrox	ylation followed by deh	ıydı	
N ABO N AB1	nipe ince go to here in a lask ringless with	CH ₃		Precursor Structures:	R E 1 ÷ 2 ÷ Metabolite Structure	e BT ADB-BUTINACA + O M	in-silico x10 ⁶ − IS/MS: 985 √ 8.0 −	\backslash		
	25 - HO	X ·					7.0			
	2.0 -	217.097			45 CH, NH		.сн ₃ 6.0 –)			
	-		CH3	ADB-BUTINACA C18H28N4O2	> H0	N	÷; 5.0 –	Per		

UNIVERSITATS

Institute of Forensic Medicine Forensic Toxicology

		MDMB-BUTINAC			ACA							In vitro	In silico			•	<u> </u>			
				Formal Biotransformation	$m/z_{calc.}$ $[M+H]^+$	MetID	Δ <i>m/z</i> [ppm]	RT [min]	CCS _{meas.} [Å ²] [M+H] ⁺	ΔCCS [%]	Urines hy- drolyzed	Urines non- hydrolyzed	pHLM	BT	Gx					
1		Nor hvdrol	n- I vzed I	Parent (C ₁₉ H ₂₇ N ₃ O ₃)	346.2125	MB0	0.98	11.55	188.6	1.2	X	X		\checkmark	\checkmark	Hydro	lyzed		No hvdro	n- Ivzed i
	Urine	MRSC	2(C)			MB1	0.65	8.85	191.4	1.1	X	X	\checkmark	\checkmark	\checkmark	MRS	Q(C)	Urine	MRS	Q(C)
<u>_</u>	1	MP6		Monohydroxylation $(+0)$	362 2074	MB2	1.38	9.64	192.5	1.7	\mathbf{X}	X	\checkmark	\checkmark	\checkmark	MB0	<u>MB7</u>	1	MB6	
	2				502.2074	MB3	0.89	10.44	193.2	2.1	\mathbf{X}	X	\checkmark	\checkmark	\checkmark			2		
	3 4	3				MB4	1.46	10.93	191.4	1.1	X	X	\checkmark	\checkmark	\checkmark			3 4		
5	5			Ester hydrolysis (-CH2)	332 1969	MB5*	1.23	8.63	184.9	1.2	X	\checkmark	×	\checkmark	\checkmark			5		
	6 7				552.1505	MB6	0.62	9.91	185.3	1.4	\checkmark	\checkmark		\checkmark				6 7		
	8			Ester hydrolysis + monohy- droxylation (-CH2 +O)	<u>348.1918</u>	<u>MB7</u>	<u>-0.14</u>	<u>7.46</u>	<u>188.8</u>	<u>1.9</u>	\checkmark	\checkmark	\checkmark	\checkmark	X			8 blank		
	10			Dihydroxylation (+20)	378.2023	MB8	0.42	7.15	195.2	2.3	X	X	\checkmark	\checkmark	X			pHLM	-	-
	11 12			<pre>Lester hydrolysis + dehydro- genation (-CH4)</pre>	330.1812	MB9	-0.01	9.43	182.4	0.6	\checkmark	X		\checkmark	X	The n not su	netabol bstance	ites stat e specifi	ed here c ones.	e are Both
	13 14 blank			droxylation + glucuronida- tion (-CH2 +O +C6H8O6)	524.2239	MB10	-0.23	6.30	217.6	-0.8	X		X		X	can b in u meta	e found rine sar bolites	l (to a le nples p of ADB-	sser ex ositive f BUTINA	tent) for ACA.
	pHLM	-	-	Ketone formation	200 1010	MB11	1.20	8.94	188.8	0.1	X	X	\checkmark	\checkmark	X			Ļ		
				(+O -2H)**	360.1918	MB12	-0.59	9.53	190.3	1.3	\checkmark	\checkmark	\checkmark	\checkmark	X			M	B <i>1</i>	
abc	lite MP	6 could	be	Ester hydrolysis + ketone formation (+O -CH4)	346.1761	MB13	1.38	6.90	185.6	0.5		\checkmark	\checkmark	\checkmark	X	Urine	Hydro	olyzed	No	n-
n t	he hydr	olyzed a	and	N-dealkylation (-C4H8)	290.1499	MB14	1.81	8.45	167.9	-1.9	X	\mathbf{X}	\checkmark	X	\checkmark		MRS	SQ(C)	MRS	Q(C)
olyz	zed urin	e sampl	les.		Probably in-source *A monohydroxylat	fragmentation ion with subse	of the respected of the	tive phase II ogenation, a	metabolites (two coelu n aldehyde formation o	ting O-glucu or a dihydrox	ronide conjugates w ylation with in-source	ith different measured (e water loss could not b	CCS values (225 e excluded.	5.6 and 2	15.8 Å ²)).	1 2				.
					Sample Tree 2 BC Review 4 Tas	k Progress JLk MS/MS Spectrum	-CH ₃	Intensities	Correlations Data Calibration Structure QC RSDs Kendri	k Mass Plot Series Plot Van Krev abolite Structure:	in-silico x10 ⁶		MDMB-B	UTINAC	CA - CH ₂	13 14				
				С	7.0				CH ₃	BT TL MDMB-BL ~] BT MDMB-B	BUTINACA - CH₂ MS/MS: ✓ 6.0 –		San	nple typ	e:	5				
					1 36	201103							<u>∧</u> u ∧ u	urine hydro urine non-l	olyzed nydrolyzed	16 17				
				HO N MB3-4	5.0 -								o p	DHLM		8				
							کے	CH ₃ MDMB- C ₁₉ H ₂₇ N	s BUTINACA Os		- 0.4 ensit					blank				
									\bigcirc					ines a c	ompou					
				N MB6/ N AB4 OH N MB7 N MB7 N MB14/ N MP9		040 160 180 200 220	HN H ₃ C 286,197 240 260 280 300	MDMB C _a H _a N 320 m/2 E C3.11	SUTINACA O ₂ is of carboxylic acid ester	H ₃ C H ₃ C DMB-BUTINACA - CH ₂ JH ₃ N ₃ O ₃	сн 2.0 – – 1.0 – – 0.0 –	Person 1 X	Person 3	Person A X		(m be	specif onohyd detecte	ic metal lroxylati d succe	oolite on) cou sfully to	ild bo.
			j		100 120 140	160 180 200 220	240 260 280 300	320 m/z EC 3.1.1		eH2sNsU3	BT 0.0 –	<u> </u>		<u> </u>)					

Conflict of Interest Disclosure: B. Schneider, I. Nordhorn and C. Baessmann are employees of Bruker Daltonics GmbH & Co. KG, Bremen, Germany