

BRUKER NANO WEBINAR

Advanced materials microanalysis using QUANTAX WDS with a grazing incidence X-ray optic

Bruker Nano Analytics, Berlin, Germany & <u>CEA-IRIG, Université Gren</u>oble Alpes, France

Webinar

Presenters

Dr. Eric Robin

Senior Researcher, CEA-IRIG, Université Grenoble Alpes, France


```
Dr. Michael Abratis
Sr. Applications Scientist WDS,
Bruker Nano Analytics, Berlin, Germany
```


Outline of the presentation

Introduction to Wavelength Dispersive Spectrometry with Parallel Beam Optic (PBO-WDS) principles and advantages

Complementing microanalysis techniques:

• What WDS can add to EDS analysis

Application examples from CEA- IRIG:

- characterization of B-rich phases in permanent REE magnets
- quantification of Mg dopant in GaN nanowires

Conclusions and Q&A

QUANTAX WDS WEBINAR

Wavelength Dispersive Spectrometry

Technical principles of WDS & EDS

Technical principles of WDS

X-rays are diffracted on the crystal lattice

- Bragg diffraction at analyzer crystal
- Measurement energy determined by Bragg angle Θ and crystal lattice constant
- X-ray detection with flow proportional counter

QUANTAX WDS WEBINAR

WDS with Parallel Beam Optic (PBO-WDS)

Rowland Circle vs. PBO type WDS

- Diverging beam creates small solid angle
- Requires 20-100 nA probe current
- Very long acquisition time at lower currents
- Causes damage to beam-sensitive samples

- Collects X-rays near the sample
- Requires only 2-20 nA probe current
- Faster acquisition, less damage

Different types of parallel-beam optics (PBO)

Grazing incidence mirror optic

Polycapillary optic

- - Based on total reflection with optic fibers
 - Optimized for higher X-ray energies
 - Degraded spectral resolution

© 2024 Bruker

QUANTAX WDS WEBINAR

What WDS can add to microanalysis (EDS)?

QUANTAX WDS and EDS parameters

Spectral resolution of WDS is generally better than EDS (up to 20x). Parameters vary with the different diffractors and X-ray energy. FWHM = full width at half peak maximum.

Limits of detection

Up to 10x higher signal/noise ratios result in 10x lower limits of detection for WDS, thus better trace element detection. Note the low HV and probe current for the present measurements.

© 2024 Bruker

Application fields for PBO-WDS on SEM

Resolution of EDS peak overlaps

Determination of trace elements

Determination of light elements

Example: MOSFET with gates made of tungsten on silicon base.

Example: Traces of Sr enriched in the core of a plagioclase of a volcanic rock.

Example: Distribution of carbon in twophase steel DP600.

QUANTAX WDS and EDS characteristics

XFlash[®] ED spectrometer

- limited spectral resolution (40–130 eV FWHM)
- lower Peak/Bg-ratios
- covers full energy range
- fast (entire spectrum all at once)

XSense WD spectrometer

- high resolution (typically 3–15 eV FWHM)
- high signal/noise-ratios → low limits of detection
- outstanding sensitivity for soft X-rays
- limited energy range
- slower (sequential measurement)

QUANTAX WDS WEBINAR

Application on advanced materials

DE LA RECHERCHE À L'INDUSTRIE

Wavelength Dispersive X-ray Spectrometry

www.cea.fr

Eric Robin IRIG/MEM/LEMMA PFNC CEA-Grenoble Alternative Energies and Atomic Energy Commission

Advanced Chemical Analysis of Nanostructures using a WDS spectrometer for SEM

XSense

IIKEE

BR

Stike

IDENTIFICATION AND CHARACTERIZATION OF REE-RICH PHASES IN RECYCLED MAGNETS

IDENTIFICATION AND CHARACTERIZATION OF REE-RICH PHASES IN RECYCLED MAGNETS

IDENTIFICATION AND CHARACTERIZATION OF REE-RICH PHASES IN RECYCLED MAGNETS

IDENTIFICATION AND CHARACTERIZATION OF REE₂Fe₁₄B IN RECYCLED MAGNETS

E LA RECHERCHE À L'INDUSTRIE

IDENTIFICATION AND CHARACTERIZATION OF REEFe₄B₄ IN RECYCLED MAGNETS

IDENTIFICATION AND CHARACTERIZATION OF ND-RICH PHASE IN RECYCLED MAGNETS

DE LA RECHERCHE À L'INDUSTRIE

QUANTIFICATION OF Mg DOPANT IN GAN NANOWIRES

CONCLUSION

Motivation for a WDS on SEM How does a WDS complement an EDS?

- ➢ Higher spectral resolution
 - ✓ Resolving peak overlaps
 - $\checkmark\,$ Resolution instead of deconvolution
- ➢ Light and trace element analyses
 - ✓ Low detection limit (including Be, B)
 - $\checkmark\,$ A few 100 ppm and below
- High spatial resolution
 - \checkmark Ability to work at low voltage

Opens the way to the analysis of nanostructures in SEM!

k- & *ξ*-factors

Doping

D3D tomo

Thank you for your attention

Eric Robin Commissariat à l'énergie atomique et aux énergies alternatives IRIGMEM/LEMMA Centre de Grenoble | 38000 Grenoble Eric.Robin@cea.fr

Innovation with Integrity

INFO.BNA@BRUKER.COM WWW.BRUKER.COM/BNA

Innovation with Integrity