A Novel Approach in Addressing the Challenges of Monitoring Multi-classes of POPs in a Single Run by GC-Ion Mobility-HRMS

Arnd Ingendoh, Carsten Baessmann, Javier Lopez*, Miguel Angel **Perez***, Hugo Mueller#, Gauthier Eppe#

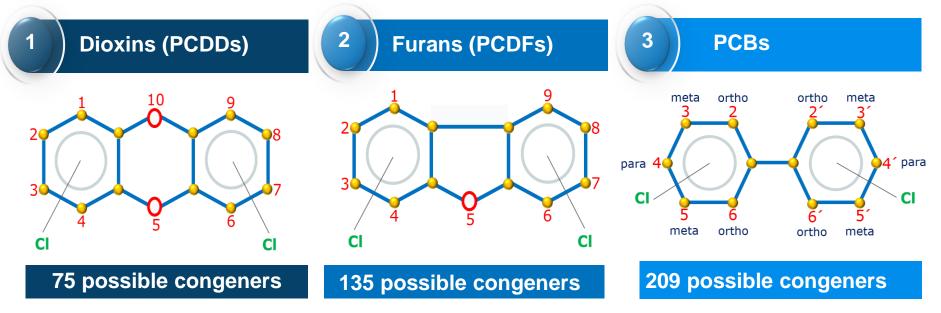
Bruker Daltonik GmbH, Bremen, Germany; *Bruker Espanola, Madrid, Spain; # Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry Department, University of Liège, Belgium

Introduction

Polychlorinated dioxins and furans are bio-accumulative molecules formed during combustion and industrial manufacturing processes. Their analysis is complex due to low regulatory exposure limits and difficult sample matrices. They are persistent organic pollutants (POP), widely found in environmental samples. Severe consequences, even at low exposure concentration, include cancer, reproduction and growth issues, immune system diseases and endocrine effects. Dioxins and furans are mainly quantified in natural matrices by high-resolution sector field MS.

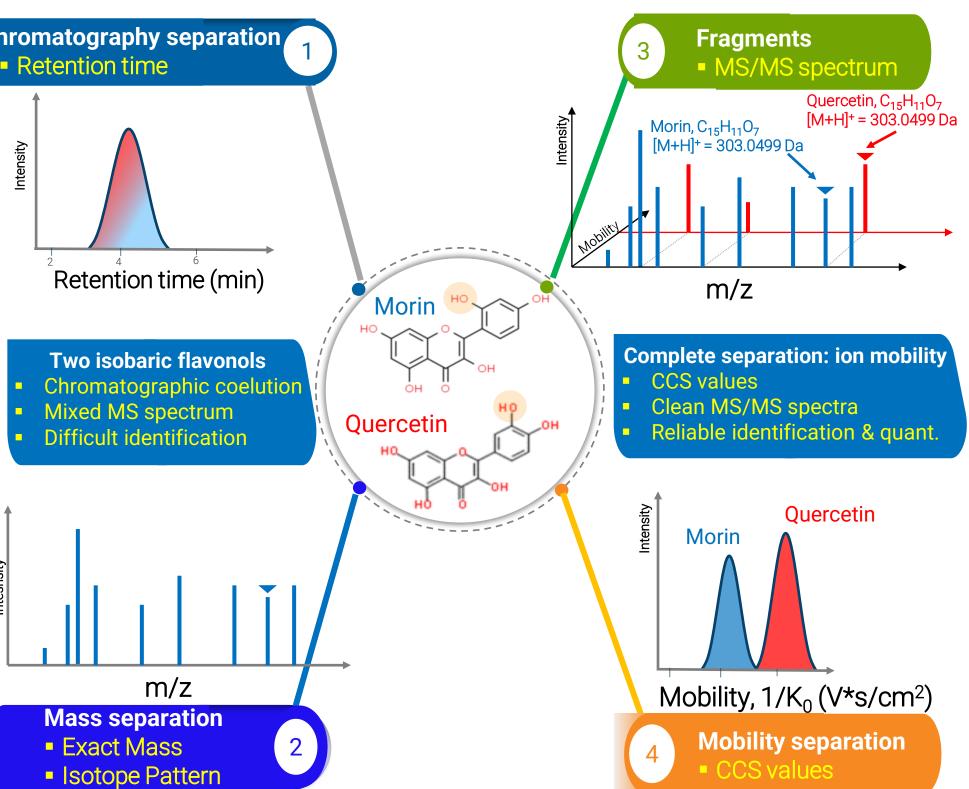
Objectives

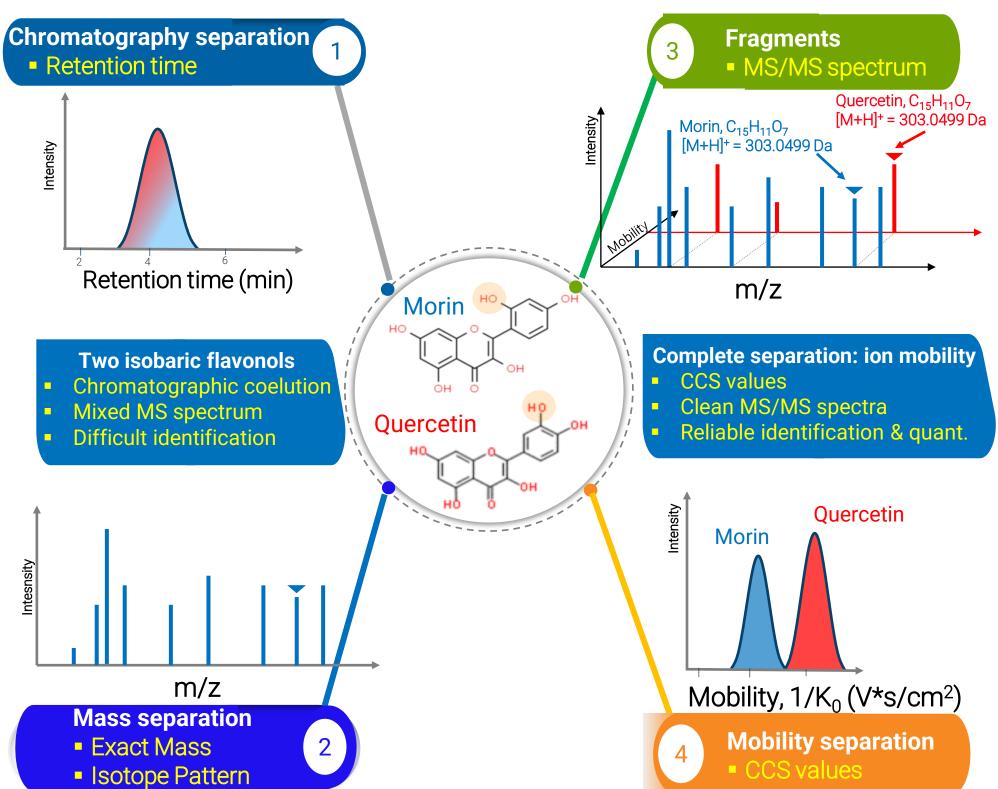
Demonstrate the capabilities of the GC-APCI-timsTOF for dioxin determination matching the performance criteria of the worldwide standard methods (EPA 1613B, EN 1948) for environmental and food samples.


Proof GC-APCI-timsTOF technology as a superior alternative to traditional magnetic sector MS with the benefits of higher analytical flexibility for other POPs and the separation of isomers/isobars for ultra-trace analysis in complex matrices.

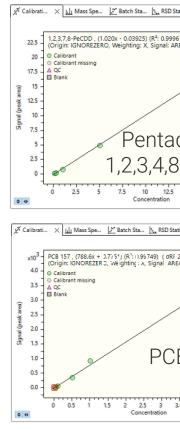
Develop a broad scope method for POPs screening and quantitation for future regulation compliance.

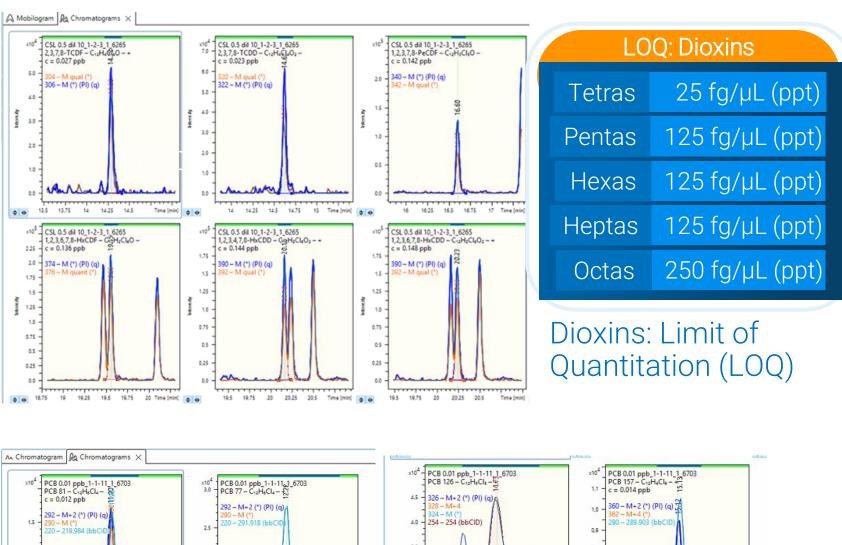
Analytical performance criteria: EPA 1613B

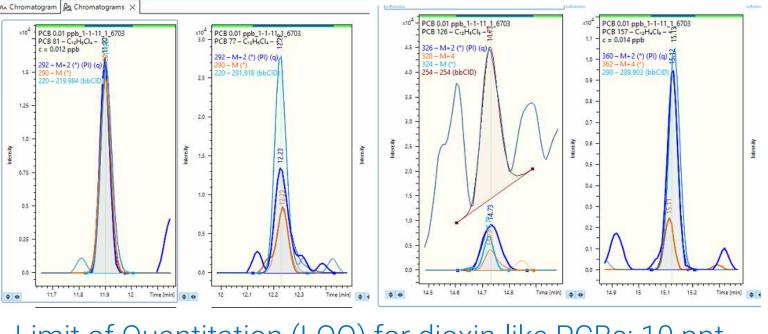



MS Resolution	>10,000 for HRMS systems		
m/z ions	Two exact mass ions to be monitored for each congener		
Identification	By retention times and ion ratios. Check RRT native/13C		
Quantitation	By isotope dilution technique		
Calibration	Calibration curve with 5 levels: CS1-CS5		
Linearity	Response factor (RF) RSD < 35% coefficient of variation		
Linearity			
Ion ratios QC	Tolerance: +/-15%		
Precision	Verification with CS3 level: recoveries RSD		
Precision	vernication with CSS level. Tecoveries RSD		
Sensitivity	Minimum level: first calibration point CS1, S/N>10		
Carry-over	Analyze a blank after a sample or after CS3		
	, maryze a blank after a bample of after boo		

Dioxins and Furans	Quantitation ion	Confirmation ion	Internal standards	PCBs	Quantitation ion	Confirmation ion	Internal standards
2,3,7,8-TCDF	305.8982	303.9011	[13C12] 2,3,7,8-TCDF			222.2242	
2,3,7,8-TCDD	321.8931	319.8660	[13C12] 2,3,7,8-TCDD	PCB 77	291.8189	289.9218	[13C12] PCB 77
1,2,3,7,8-PeCDF	339.8592	341.8563	[13C12] 1,2,3,7,8-PeCDF	PCB 81	291.8189	289.9218	[13C12] PCB 81
2,3,4,7,8-PeCDF	339.8592	341.8563	[13C12] 2,3,4,7,8-PeCDF	PCB 105	325.8799	327.8771	[13C12] PCB 105
1,2,3,7,8-PeCDD	355.8541	357.8513	[13C12] 1,2,3,7,8-PeCDD	PCB 114	325.8799	327.8771	[13C12] PCB 114
1,2,3,4,7,8-HxCDF	373.8202	375.8173	[13C12] 1,2,3,4,7,8-HxCDF	PCB 118	325.8799	327.8771	[13C12] PCB 118
1,2,3,6,7,8-HxCDF	373.8202	375.8173	[13C12] 1,2,3,6,7,8-HxCDF				
1,2,3,7,8,9-HxCDF	373.8202	375.8173	[13C12] 1,2,3,7,8,9-HxCDF	PCB 123	325.8799	327.8771	[13C12] PCB 123
2,3,4,6,7,8-HxCDF	373.8202	375.8173	[13C12] 2,3,4,6,7,8-HxCDF	PCB 126	325.8799	327.8771	[13C12] PCB 126
1,2,3,4,7,8-HxCDD	389.8152	391.8123	[13C12] 1,2,3,4,7,8-HxCDD	PCB 156	359.8410	361.8381	[13C12] PCB 156
1,2,3,6,7,8-HxCDD	389.8152	391.8123	[13C12] 1,2,3,6,7,8-HxCDD	PCB 157	359.8410	361.8381	[13C12] PCB 157
1,2,3,7,8,9-HxCDD	389.8152	391.8123	[13C12] 1,2,3,7,8,9-HxCDD	PCB 167	359.8410	361.8381	[13C12] PCB 167
1,2,3,4,6,7,8-HpCDF	407.8712	409.7784	[13C12] 1,2,3,4,6,7,8-HpCDF	PCB 169	359.8410	361.8381	[13C12] PCB 169
)))))))))))))))	10710712	10017701	[10012] 1,2,0, 1,0,7,0 11pcb1	PCB 189	393.8020	395.7991	[13C12] PCB 189
1,2,3,4,7,8,9-HpCDF	407.8712	409.7784	[13C12] 1,2,3,4,7,8,9-HpCDF	List of analyzed compounds: dioxins, furans and dioxin-like PCBs.			
1,2,3,4,6,7,8-HpCDD	423.7762	425.7733	[13C12] 1,2,3,4,6,7,8- HpCDD				
OCDF	443.7394	441.7423	[13C12] OCDD				
OCDD	459.7343	547.7372	[13C12] OCDD				

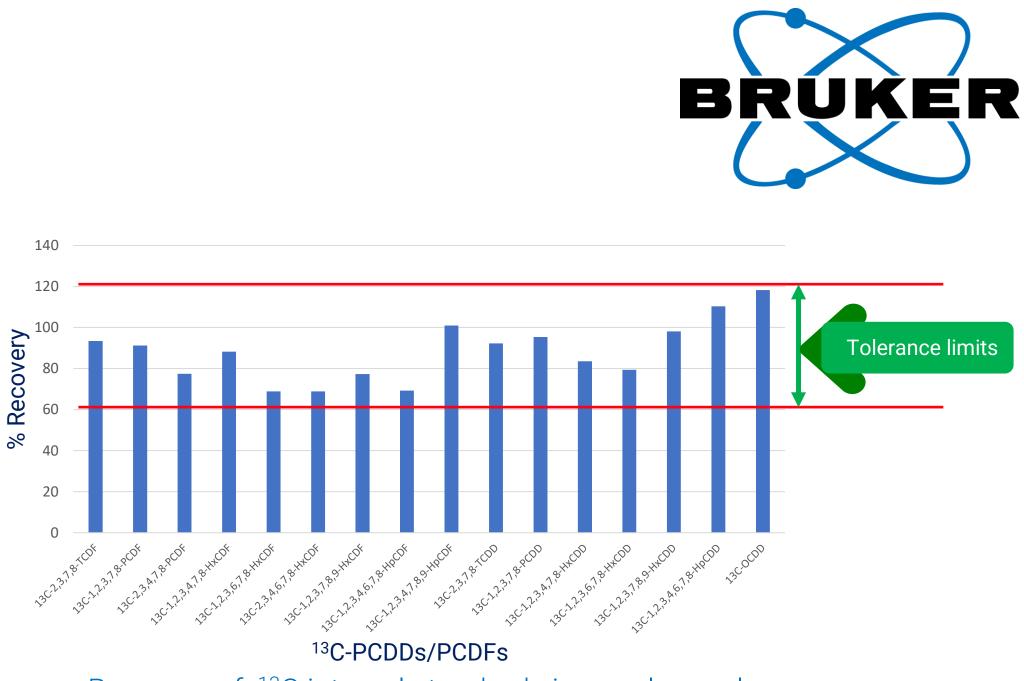



Total of 419 possible congeners. **17 congeners** are classified as toxic (due to 2,3,7,8-chlorine substitution).


Methods

1 uL sample separated by GC (35 min run, Restek 60 mx0.25 um). GC-APCI source coupled to an ion mobility QTOF (timsTOF Pro 2, Bruker) enabling fast and sensitive quantitative analysis of the different classes of dioxins, furans and PCBs in a single GC/HRMS run. Criteria for validation and quantification of compounds: mass accuracy, retention time, isotope pattern matching, MS/MS qualifiers and collision cross sections (CCS) from ion mobility filtering. Kendrick mass defect plots filtered specific compounds containing CI or Br from the complete GC/MS chromatogram. TargetScreener 4D software (Bruker) used as a post-processing tool for the automated quantification of the POP.

Results



Adding the 4th analytical dimension: CCS

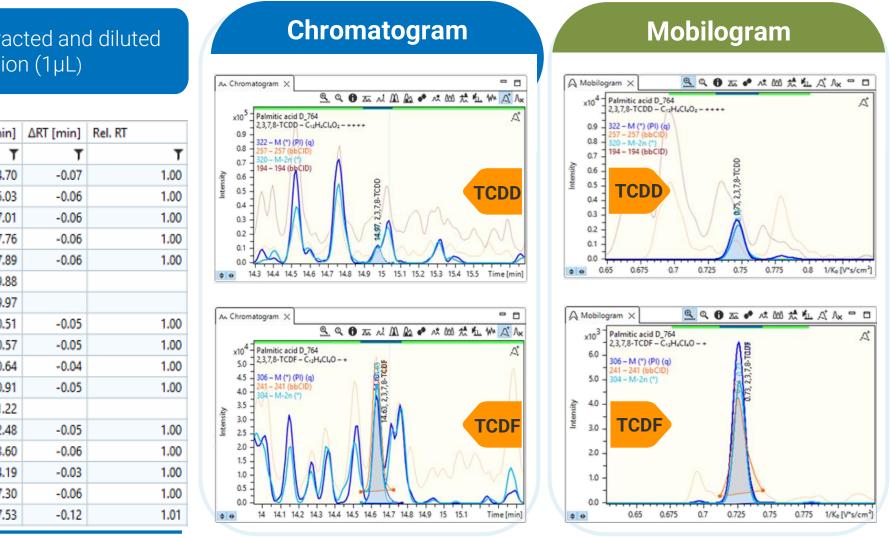
For Research Use Only. Not for use in diagnostic procedures.

Recovery of ¹³C internal standards in a real sample

Stati 田 Statistic 日 日 島 哲 イ � 日	Analyte name	R ²	RSD _{RF} %
961) (gRF 9.86) AREA_MOBILOGRAM, Functic	2,3,7,8-TCDF	0.99979	9.19
	2,3,7,8-TCDD	0.99924	19.07
	1,2,3,7,8-PeCDF	0.99795	7.47
	2,3,4,7,8-PeCDF	0.99863	10.49
adioxin:	1,2,3,7,8-PeCDD	0.99961	9.86
B-PeCDD	1,2,3,4,7,8-HxCDF	0.99996	9.85
5 15 17.5 20 ppb	1,2,3,6,7,8-HxCDF	0.99920	15.91
itati 🏛 Statistic 🗖 🗖	1,2,3,7,8,9-HxCDF	0.99942	10.32
島帽イショ	1,2,3,4,7,8-HxCDD	0.99913	9.09
UF 26.89) REA, MC BILOGRAM, Functic	1,2,3,6,7,8-HxCDD	0.99966	10.98
	1,2,3,7,8,9-HxCDD	0.99640	9.41
	2,3,4,6,7,8-HxCDF	0.99583	20.95
	1,2,3,4,6,7,8-HpCDF	0.99752	33.01
CB 157	1,2,3,4,6,7,8-HpCDD	0.99598	20.56
3.5 4 4.5 5 ppb	1,2,3,4,7,8,9-HpCDF	0.99673	32.96
	OCDD	0.99910	9.93
	OCDF	0.99815	14.08

Dioxins and dioxin-like PCB: linearity and RSD.

Limit of Quantitation (LOQ) for dioxin-like PCBs: 10 ppt


Analysis of dioxins in palm fatty acid

4.52 g of rapeseed oil sample extra 3 x with nonane before injection acid					
MRSQC	Analyte Name	Quantity [ppb]	Area of PI	∆m/z [mDa]	RT expected [mir
Т	T	Т	T	T	
	2,3,7,8-TCDF	4.123	131792	0.04	14.7
	2,3,7,8-TCDD	1.938	39163	-0.27	15.0
	1,2,3,7,8-PeCDF	1.504	58022	0.46	17.0
	2,3,4,7,8-PeCDF	1.244	58045	-0.90	17.7
	1,2,3,7,8-PeCDD	2.057	95851	0.25	17.8
	1,2,3,4,7,8-HxCDF	n.a.			19.8
	1,2,3,6,7,8-HxCDF	n.a.			19.9
	1,2,3,7,8,9-HxCDF	0.331	13851	-0.85	20.5
	1,2,3,4,7,8-HxCDD	0.873	11112	0.33	20.5
	1,2,3,6,7,8-HxCDD	0.656	28371	0.65	20.6
	1,2,3,7,8,9-HxCDD	3.093	90878	0.73	20.9
	2,3,4,6,7,8-HxCDF	n.a.			21.2
	1,2,3,4,6,7,8-HpCDF	1.750	36215	-0.77	22.4
	1,2,3,4,6,7,8-HpCDD	20.797	703710	0.31	23.6
	1,2,3,4,7,8,9-HpCDF	0.300	10335	-1.14	24.1
	OCDD	1014.376	12098706	-0.42	27.3
	OCDF	1.073	3201	-0.58	27.5

The presence of dioxins is close to the action limit (table, left). Ion mobility (green, right) significantly improves the selectivity and sensitivity of single peaks compared to GC alone (blue, middle).

> A new era adding the 4th dimension for Dioxins and POPs analysis in complex matrices Reduction of potential isobaric interferences in complex matrices

- Separation of isomers/isobaric compounds
- More precise quantitation
- Outstanding sensitivity: Low femtograms level in real samples
- Analyze not only Dioxins but a broad scope of POPs in complex matrices
- Prepared for future regulation compliance

Conclusions

timsTOF Pro 2