To understand biological systems at a functional level, a comprehensive picture of the diverse forms proteins can take is crucial. Top-down mass spectrometry (MS)-based proteomics provides a comprehensive analysis of such proteoforms, but the extraordinary dynamic range of the human proteome has meant that the MS detection of low-abundance proteins has remained an unsolved challenge. New strategies in top-down proteomics for precision medicine enabled by the timsTOF Pro are however helping to change this.
In this webinar, David Roberts will present novel top-down proteomics and nanotechnology approaches for the sensitive enrichment, analysis, and characterization of low-abundance protein biomarkers.
Moreover, David will reveal a first-hand look at how the timsTOF Pro enables in-depth proteomics for the high-throughput proteomic analysis of 3D human induced pluripotent stem cell-derived engineered cardiac tissues assisted by a novel photo-cleavable surfactant, Azo. Lastly, David will demonstrate new native ion mobility MS approaches for the in-depth characterization of native antibody drug conjugates with high sensitivity.
David S. Roberts
Chemistry PhD Student Ying Ge Lab and Song Jin Lab, University of Wisconsin-Madison.
For Research Use Only. Not for use in clinical diagnostic procedures.