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Integration and Joint Multivariate Analysis of Multimodal Chemical Imaging Data
of Hepatocellular Carcinoma in Rat

▪ Possible to combine features from multiple

modalities into a single dataset, which enabled the

quantification of correlations across modalities

▪ Multivariate analysis such as spatial segmentation

using information from different modalities mimics

expected tissue morphology
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Figure 1. Stacking of the different 
modalities. In this analysis the MALDI 
imaging measurement covers only 
part of the tissue, the other modalities 
are clipped to the MALDI 
measurement.

Results

Integration of multimodal data into single datasets provides

a complete way to mine information across modalities.

.

Summary

Since not all datasets were acquired from the same tissue
section, distortion between the modalities was observed.
Still, the registration was viable to perform cross-modality
correlation analysis. The rat was treated with Cisplatin
and underwent a contrast-enhanced MRI scan prior to
tissue collection. Since both platinum and the gadolinium
from the contrast agent was seen in the ICP-MS dataset,
one can look for which molecular features from the
MALDI measurement are most or least correlated with
those elements. Similarly, it can be analyzed which
molecular features correlate most or least with the
infrared signal at 1030 cm-1 (characteristic for glycogen)
or 1238 cm-1 (nucleic acids). Lastly, the iron signals from
µXRF and ICP-MS correlated most with each other. These
findings are summarized in Table 1.

With the combined dataset, it was also possible to
perform cross-modality multivariate analyses, such as
principal component analysis (data not shown) or spatial
segmentation. A spatial segmentation analysis based on
a selection of features from all modalities is shown in
Figure 2, which shows agreement with the histology.

Brief Description of the Workflow

1. Create SCiLS Lab dataset from the MALDI imaging

measurements.

2. Convert one representative chemical channel of each of

the other modalities into an optical image with the

native resolution.

3. Co-register the optical images from the previous step

into SCiLS Lab as optical images for alignment with the

MALDI Imaging data.

4. Retrieve the transformation matrices for the co-

registered optical images via the SCILS Lab API.

5. Use an R or Python script to resample all the channels

of the other modalities to the SCiLS Lab spot grid and

write those intensities into SCiLS Lab as external

features.

Note: Since version 2024b, the SCiLS Lab API documentation 

contains complete example code for the above workflow in both R 

and Python.

Data were acquired from a rat hepatocellular
carcinoma tissue section using the following
instruments: CCS-enabled MALDI Imaging: timsTOF
fleX at 20 µm spatial resolution (Bruker Daltonics,
Bremen, Germany); LA-ICP-MS: iCAP TQ ICP-MS, 25 µm
(Thermo Fisher Scientific, Bremen, Germany) coupled
to an LSX 213 G2+ laser system (CETAC Technologies,
Omaha, NE, USA); µXRF: M4 TORNADO, 30 µm (Bruker
Nano, Berlin, Germany), IR imaging: Hyperion II-ILIM, 5
µm (Bruker Optics, Ettlingen, Germany). XRF and IR
data were collected from the same section. The data
were combined into a single SCiLSTM Lab (Bruker
Daltonics, Germany) dataset. Details on the
background and sample preparation can be found in
[1].

A plethora of multivariate imaging modalities are
available to gain molecular information on tissue
sections, all of which visualize different molecular
aspects of the sample and therefore are
complementary to each other. While it is already
common to subject the same sample to different
imaging techniques, the joint analysis of different
modalities still poses challenges. Specifically, the
integration of multiple modalities into a single dataset
to find cross-modality correlations which is limited by
the availability of accessible software approaches.
Here, we present a flexible software workflow that
enables the multivariate analyses on multimodal
measurements.

Table 1. Correlation table with selected features from each
modality. For MALDI- TIMS, m/z and ccs indicate m/z in Da
and collision cross section in Å², for LA-ICP-MS and µXRF,
the measured element is indicated, for IR measurements
the wavenumber is shown.
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Figure 2. Spatial segmentation based on combined features
from all modalities ( MALDI: 17, IR: 7 µXRF: 2, LA-ICPMS: 6
features). A) Segmentation map, B) Segmentation tree, C)
Microscopy image of H&E stained section with the relevant
tissue area outlined in red.
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m/z:741.527 ccs:287.7 1.00 0.14 -0.18 -0.15 -0.47 -0.56 -0.65 -0.67 -0.54 -0.61 -0.61 -0.52

m/z:760.58 ccs:288.913 0.14 1.00 -0.08 -0.08 -0.11 -0.11 -0.18 -0.48 -0.37 -0.16 0.06 -0.10

µXRF Fe -0.18 -0.08 1.00 0.33 0.20 0.23 0.25 0.22 0.10 0.12 0.15 0.10

LA-ICP-MS Fe -0.15 -0.08 0.33 1.00 0.14 0.23 0.26 0.20 0.09 0.11 0.14 0.08

IR WN 1238 -0.47 -0.11 0.20 0.14 1.00 0.58 0.55 0.50 0.37 0.35 0.47 0.49

LA-ICP-MS Gd -0.56 -0.11 0.23 0.23 0.58 1.00 0.85 0.54 0.31 0.31 0.56 0.28

LA-ICP-MS Pt -0.65 -0.18 0.25 0.26 0.55 0.85 1.00 0.66 0.47 0.46 0.63 0.50

m/z:848.548 ccs:298.577 -0.67 -0.48 0.22 0.20 0.50 0.54 0.66 1.00 0.67 0.70 0.57 0.47

m/z:796.521 ccs:289.161 -0.54 -0.37 0.10 0.09 0.37 0.31 0.47 0.67 1.00 0.72 0.65 0.50

m/z:824.551 ccs:295.57 -0.61 -0.16 0.12 0.11 0.35 0.31 0.46 0.70 0.72 1.00 0.51 0.44

m/z:758.564 ccs:285.919 -0.61 0.06 0.15 0.14 0.47 0.56 0.63 0.57 0.65 0.51 1.00 0.52

IR WN 1030 -0.52 -0.10 0.10 0.08 0.49 0.28 0.50 0.47 0.50 0.44 0.52 1.00
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