The atomic force microscope (AFM) is an extremely flexible instrument that can be used for imaging, measuring forces and elastic properties and manipulating a variety of samples, at high resolution. The applicability of AFM is further extended in combination with light microscopy as optics deliver more bulk details and by fluorescence, compositional contrast. To date, the combination of AFM and light microscopy has been limited to samples on transparent substrates, where AFM has top-down access to the sample and an inverted light microscope has bottom-up access to the same area [1,2].
However, there are many areas of research in which the combination of AFM with optical microscopy on opaque samples would be a powerful tool. Topics such as bacterial growth on metallic surfaces, bionics and surface chemistry, fluorescent polymers and coatings, i.e. areas from both life and material science could be addressed with such a combination of techniques.
The main problem limiting the effective combination of these techniques on non-transparent surfaces has been providing access for both techniques at the same spot on the sample surface. To reach the full capabilities of optical microscopy, objective lenses with an extremely short working distance are required, leaving no space for AFM access to the same position. JPK Instruments has developed a solution to allow integration of upright optical microscopy and AFM, named the BioMAT Workstation (Figure 1).