Royal jelly's phenolic profile via UPLC-VIP-HESI-TIMS-QTOF-MS: A thorough characterization following a multivariate optimization approach

Elena S. Nastou¹; Dafni V. Preza-Mayo-Kataki¹; Panagiotis-Loukas P.Gialouris¹; Carsten Baessmann²; Nikolaos S. Thomaidis¹

¹National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Analytical Chemistry, Athens, Greece; ²Bruker Daltonics GmbH & Co. KG, Bremen, Germany

Introduction

scientific interest in the analysis A growing jelly royal ot has been developed.

... due to its nutritional and financial significance.

Evidence relates its **positive health impact** to the high content of specific bioactive components, especially **phenolic compounds**^[1].

References

[1]Giampieri, F.; Quiles, J. L.; Cianciosi, D.; Forbes-Hernández, T. Y.; Orantes-Bermejo, F. J.; Alvarez-Suarez, J. M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70 (23), 6833–6848.

[2] Kourtchev, I.; Szeto, P.; O'Connor, I.; Popoola, O. A. M.; Maenhaut, W.; Wenger, J.; Kalberer, M. Comparison of Heated Electrospray Ionization and Nanoelectrospray Ionization Sources Coupled to Ultra-High-Resolution Mass Spectrometry for Analysis of Highly Complex Atmospheric Aerosol Samples. Anal. Chem. 2020, 92 (12), 8396–8403. [3]Ridgeway, M. E.; Lubeck, M.; Jordens, J.; Mann, M.; Park, M. A. Trapped Ion Mobility Spectrometry: A Short Review. International Journal of Mass Spectrometry 2018, 425, 22–35.

HELLENIC REPUBLIC National and Kapodistrian University of Athens

2	LOD (µg g ⁻¹)	LOQ (µg g ⁻¹)	ME%	Recovery% (0.25 µg g ⁻¹)	Recov (1.0 µg	ery% g g ⁻¹)	Recovery% (5.0 µg g ⁻¹)	
8	0.00051	0.0016	-121	80	86		89	
92	0.10	0.31	88	101	10	9	106	
RSD% Repeatability (5.0 µg g⁻¹)		ty RSD% Int	RSD% Intermediate Precision		RSD% Intermediate Precision		RSD% Intermediate Precision	
		(0.25	µg g⁻¹)	(1.0 µg g ⁻¹)		(5.0 µg g-1)		
	1.1	1	1.3		0.87		1.2	
	5.7	1	10		12		19	