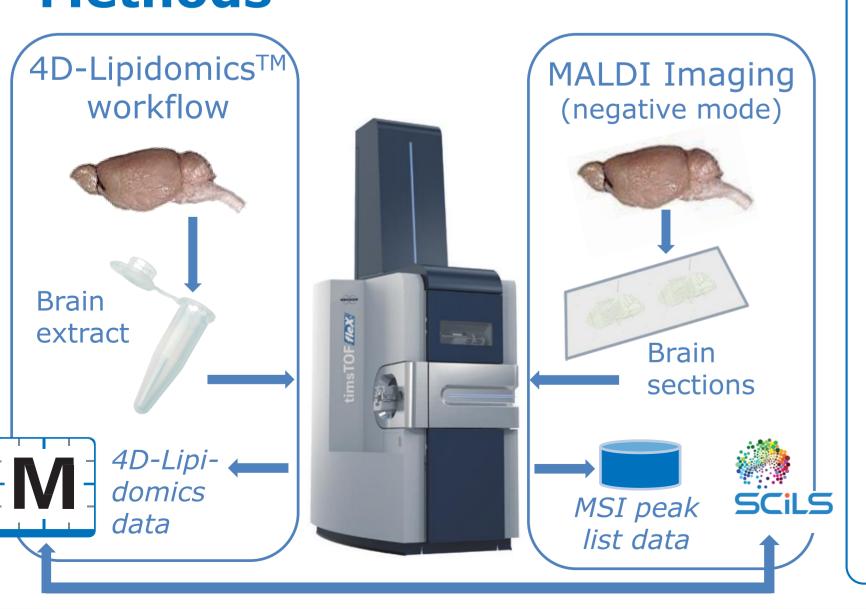
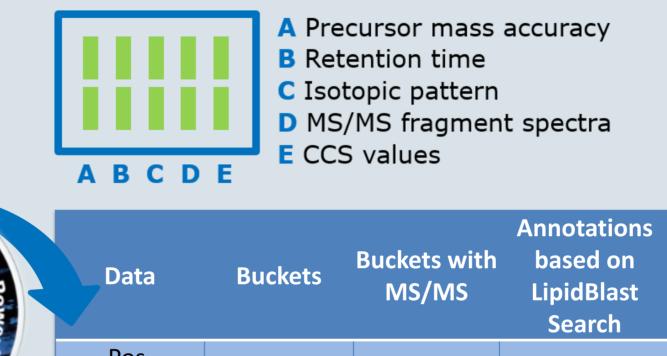

4D-LipidomicsTM based automated annotation of MALDI Imaging data using a dedicated bioinformatics pipeline

Janina Oetjen¹, Christian Marsching², Sven Meyer¹, Corinna Henkel¹, Annika Koch¹, Nikolas Kessler¹, Wiebke Timm¹, Aiko Barsch¹, Jan Hendrik Kobarg¹, Dennis Trede¹, Heiko Neuweger¹, Carsten Hopf²


ASMS reboot 2020, ID 302510, Code WP 262

- 1. Bruker Daltonics Inc., Fahrenheitsstr. 4, 28359 Bremen, Germany
- 2. Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Mannheim, Germany

Introduction


The complexity of lipid samples makes their analysis directly from tissue sections extremely challenging. Ion mobility helps in this respect by introducing an additional analytical dimension that can separate isomeric and isobaric molecules. Moreover, annotation of lipids from MALDI Imaging data is often hampered by the limited ability to perform large-scale MS/MS experiments directly from tissue. Here we demonstrate a workflow combining 4D-Lipidomics[™] and MALDI Imaging data obtained from just one instrument, timsTOF fleX, in conjunction with a bioinformatics pipeline for automatic lipid annotation.

Methods

Results

4D-Lipidomics results Apply five quality criteria on PASEF empowered 4D-Lipidomics data for confident annotations. Merge positive and negative mode data to increase the number of hits.

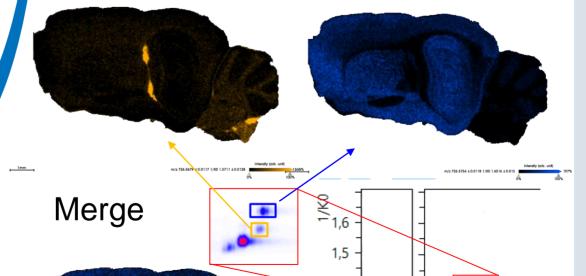
Annotation

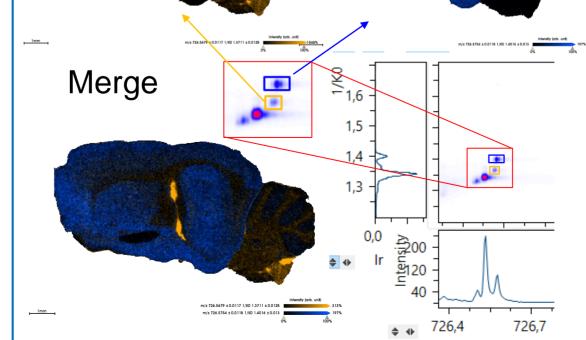
cerebellum

Blue: Corpus callosum

Green: White matter of

Orange: Molecular


1.5 1.0	Pos. Ionization Neg. Ionization	7107 2915	2984 1535	811 546	
0.5 0.0 2 4 6 8 10 12 14 Time	Pos / Neg merged	9797	4353	1232	
MALDI Imaging results.					

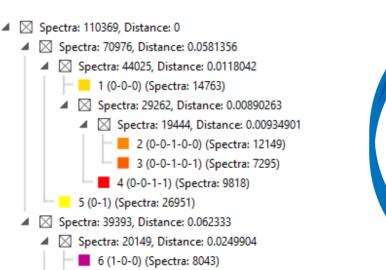

AQ score

4D-Molecular Imaging

Separate isobaric or isomeric compounds using trapped ion mobility spectrometry (TIMS).

m/z 726.571 $1/K_0 = 1.37$ $1/K_0 = 1.40$

Correlate molecular information with spatial information.


Conclusions

- Highly confident annotations of PASEF empowered 4D-Lipidomics[™] datawere retrieved using five quality scoring criteria.
- SpatialOMx® workflow for automatic annotation of MALDI Imaging data using SCiLS Lab and MetaboScape presented.
- 4D-Molecular Imaging applying TIMS reveals distributions of isobaric compounds without having hundreds of thousands of resolving power.

timsTOF fleX

Region of interest (ROI) map of automatically generated molecular features.

■ Spectra: 12106, Distance: 0.00899758 7 (1-0-1-0) (Spectra: 5817)

8 (1-0-1-1) (Spectra: 6289)

9 (1-1) (Spectra: 19244)

MetaboScape • Red: Cortex

Extract data from ROIs and import to MetaboScape 5.0

Retrieve automatic annotations using an Analyte List composed of the 4D-Lipidomics results.

	m/z meas.	M meas.	lons	Name	mSigma	Δm/z [ppm]	Molecular For	Annotations	AQ
1	778.57431	779.58159	- 	PE 40:5e_ PE 18	36.5	-0.197	C ₄₅ H ₈₂ NO ₇ P	AL	
2	788.52374	789.53101	÷ =	PE 40:7_ PE 18:	89.6	0.200	C ₄₅ H ₇₆ NO ₈ P	AL	::
3	647 46525	6/12 //7252	+_	DA 22-0 DA 16-	22.0	_0 571	CacHacOaD	A	
4	D.	ı alzat	+-61	a (fa-	tura	li~+)	with		
5	DU	JCKEL	. Labi	\mathbf{c}	iture	1151)	VVILII	55	
5 6				e (fea		•			
-				•		•			
-				comp		•			
6				•		•			