ASMS 2024 | 320108

How Clean is "Clean"? Going Above and Beyond the Conventional Check-Clean with a Rapid, DART-MS Protocol

William L. Fatigante Kevin Stup

Bruker Applied Mass Spectrometry, Billerica, MA

INTRODUCTION

Fatty acids, oils, grease, and other industrial residues can negatively impact instrumentation that rely on clean components in order to perform optimally. That is why laboratories have in place specific cleaning and bake-out protocols in place. However, these protocols may not always be as effective as one may think. This is where highresolution mass spectrometry comes to the forefront as a means for creating a "check-clean" process to insure cleanliness.

Through this work, a fast (< 30sec) solution is presented for direct comparison of unused, clean, and used components. Mass spectrometer components such as capillaries and nebulizers were sampled to demonstrate this workflow. The resulting mass spectra displayed hundreds of discrete peaks with several corresponding to hydrocarbons, fatty acids, and various polymers. The gathered data was then processed in MetaboScape® where unique features were identified. A principal component analysis was then performed to help detect if cleaned components were grouping with other clean components or showing signs of remaining contaminants.

METHODS AND INSTRUMENTATION

2 spray needles of varying cleanliness were taken from ESI sources and directly sampled for this study. A brand-new needle was also sampled to provide a baseline comparison.

The used needles were cleaned. The first was cleaned with lint-free wipes and methanol/isopropanol and thoroughly wiped. The second needle was cleaned per Bruker's recommended procedure and placed in an ultrasonic bath with isopropanol/ H_2O . Once cleaned, the three needles (new, sonicated, and wiped) were

sampled by Contec Polyurethane Cleanroom Swabs that were dipped in IPA. The swabs were then soaked in 100μ L of IPA to desorb any contaminants. (Fig. 1) The resulting solutions and a blank were analyzed in triplicate on the Bruker impact-II QTOF MS_instrument, using a DART ion source with QuickStrip sampling module (Bruker Daltonics). All data analyses and statistic computations were made within MetaboScape (Bruker Daltonics).

METHODS AND INSTRUMENTATION (cont.)

Figure 1. Spray needle sampling procedure.

RESULTS

Data processing in MetaboScape revealed > 1000 features

- ✤ A Principal Component Analysis (PCA) was generated to evaluate how the different cleaning methods compare to that of a new spray needle. Based on the clustering with the plot, results suggest that the sonicated
- needle is displaying similar results to that of the new needle.
- ✤ Whereas the wiped needle is grouping separately. Suggesting that the cleaning method is not sufficient.

RESULTS

Ident

Automatic workflow for spectral library matching

- Exemplary identification of Tris(2-chloroisopropyl)Phosphate (TCEP) Molecular formula matches with accurate mass (m/z) and isotope pattern (mSigma) of detected feature

		MS/MS	Name	Molecular Formula	∆m/z [mDa]	Δm/z [ppm]	mSigma	
00890	326.00162	+ □	վես	Tris(2-chloroisopropyl)phospha	te C ₉ H ₁₈ Cl ₃ O ₄ P	0.790	2.417	8.9
550.16 100 onize y-axe	0 150 150 150 150 150 150 110 150 15	200 s. loi	250 ns MS/N III.II	AS Name Tris(2-chloroisopropyl)phos	AQ 🔻 Annot Ar	t exam	ple spe score Annotati 972.3 Bruker Meta of how Sigma, onds to al librar	ectra on Source boBASE Per well and o the y.
The una stat	puta annota	ative ated	e ID , filte	owns using va of compour red) signals fo ance between t	nds within ocused on r	the nass fe	eatures	of

Identification of unknowns using various tools (cont.)

Automated calculation o potential elemental composition with martFormula. Selection ential molecular form

Public database structur search based on derived formula using CompoundCrawler

Conclusions

- uses can include..

0.5 -

possibilities								1 102 2 ie	[M+H]+ (3		npound:	Con
2						-	opes v	1.102, 2.15	[IVI+H]+ (3			
5	ities				ties	-			•		ect Adducts	0
1922	lidia	5			s ii					Informatio	ude MS/MS Info	✓ Incl
ă ,	possibilities	litie :	5		sibilities 4 possibilities	litie				DCC:	nts: CHNOPSS	F 1
	m I	possibilities	219.18747		4 possibilities 	possibilities				2221	Its: CHINOPSS	Elemer
			6		4	- 8	nDa 🗸	5			ice:	Toleran
+	╷╷╷	<u>ن</u> م	\neg	4- 4 -7-7	ць II	-Liquida						
00		250	200)	150	100						
						,					N	
1 m/z [m		[mDa]		/z calc.		n/z meas.		M calc.	Formula		Neutral Form	#
0.7721		-0.7721		0123319		371.1020	-	370.0940	H ₃₁ O ₅ Si ₅ *		C ₁₀ H ₃₀ O ₅ Si ₅	1
0.0973 3.5041		0.0973		0210257 9850125		371.1020	-	370.0948	H35S2Si5+		C ₁₁ H ₃₄ S ₂ Si ₅ C ₁₃ H ₃₀ OSi ₆	2
0.5653		0.5653		0257060		371.1020	-	370.0912 370.0953	H ₃₁ OSi6 ⁺		C ₁₃ H ₃₀ OSi6 C ₁₁ H ₂₆ N ₄ OSi	3
3.2740		-3.2740		9873127		371.1020	-	370.0955	1 ₂₇ N ₄ OSi ₅ *		C11H26N403I	5
3.2740		-3.2140		5075127	571.03	371.1020	i ti i j t	370.0315	H ₃₁ SSi ₅ +	5 U	01411300015	,

		Search/Filter		Name 🗸 🗴
	Compound ID	Database	Molecular Formula	Reference Count 🔻
pentasiloxane	10451	ChemSpider	C10H30O5Si5	958
rl-4,6-bis[(trimethylsilyl)oxy]-1,3,5,2,4,6-trioxatrisilinane	9297363	ChemSpider	C10H30O5Si5	1
hyl-1,3,5,7,9,2,4,6,8,10-pentoxapentasilecane	20137541	ChemSpider	C10H30O5Si5	1
entasiloxane	ec4e1d97-21cf-49	AnalyteDB	C10H30O5Si5	0
	CID 10913	PubChem	C10H30O5Si5	0
hyl-1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane	CID 631041	PubChem	C10H30O5Si5	0
,4,6,8,10-pentaoxapentasilecane	CID 153952961	PubChem	C10H30O5Si5	0
yl-1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane	CID 123733825	PubChem	C10H30O5Si5	0
yl)-4,4,6,6,8,8,10,10-octamethyl-2-(trideuteriomethyl)-1,3,5,7,9,2,4,6,8,10-pentaoxa	CID 22883046	PubChem	C10H30O5Si5	0
amethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocan-2-yl)oxy-trimethylsilane	CID 20632109	PubChem	C10H30O5Si5	0
-tetramethyl-6-trimethylsilyloxy-1,3,5,2,4,6-trioxatrisilinan-2-yl)oxy]silane	CID 11122234	PubChem	C10H30O5Si5	0
	CID 88892567	PubChem	C10H30O5Si5	0
	CID 88947949	PubChem	C10H30O5Si5	0
ethyl-2,4,6,8,10-penta((114C)methyl)-1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane	CID 100931387	PubChem	C10H30O5Si5	0
-tetramethyl-2-trimethylsilyloxy-1,3,5,2,4,6-trioxatrisilinan-2-yl)oxy]silane	CID 101715852	PubChem	C10H30O5Si5	0
D-Decakis(trideuteriomethyl)-1,3,5,7,9,2,4,6,8,10-pentaoxapentasilecane	CID 169437160	PubChem	C10H30O5Si5	0
ase Name 8 h f s				

In-silico fragmentation via MetFrag for MS/MS spectra matching. Resulting confirmation can lead to feature nnotation and addition t in-house library for faste feature identification in future experiments.

DART-QTOF provided a fast method of analysis with each sample taking less than \sim 1 minute to swab/desorb and then <u>6 seconds</u> to ionize.

Using the nontargeted software platform, **MetaboScape**, unique features were identified and used to generate a PCA plot. Showing that the extract from the Sonicated Sprayer groups closely to the extract from the New Sprayer. Some other

> <u>Synthesis labs</u> – verify that glassware/equipment are free of cleaning agents or previously used reagents.

> <u>Manufacturing/Production labs</u> – Confirm that equipment is clean of cross-contaminants from previously manufactured compounds.

Other feature identification tools (spectral library matching, SmartFormula, CompoundCrawler, and MetFrag) were also used to identify contaminants such as **TCEP** (common plasticizer) and **Decamethylcyclopentasiloxane** (extremely common in personal care products and industrial lubricants).